NA PRÁTICA A TEORIA É A MESMA

(Sistema Francês de Amortização)

Em um Congresso, um Grupo de Professores e Autores composto por Administradores, Economistas, Contadores e, todos Peritos Judiciais, apresentam os seguintes trabalhos :

$\Delta\,$ A Matemática Financeira ensina Quatro Modalidades de Pagamentos (Amortizações) de Empréstimos e Financiamentos

MODALIDADE UM – Sistema Alemão – Parcela Única ; utiliza a Tábua IV – $\frac{1}{(1+i)^n}$ –

conhecido como Fator de Desconto e fundamenta-se no DESCONTO COMPOSTO.

MODALIDADE DOIS – Sistema Americano – Em desuso.

- MODALIDADE TRÊS Sistema Price Único Pagamento no final e utiliza a Tábua I $(1+i)^n$ fórmula do Juro Composto e conhecido como Fator de Capitalização. Esta Tábua foi utilizada pelo Sr. Price.
- MODALIDADE QUATRO Sistema Francês de Amortização com **n** Parcelas iguais, mensais e sucessivas e utiliza as :
 - Tábua III $\frac{i(1+i)^n}{(1+i)^n-1}$ para o cálculo do Valor da Prestação –

pmt – (tecla da HP-12C) = PV
$$\frac{i(1+i)^n}{(1+i)^n-1}$$

Tábua V – $\frac{(1+i)^n-1}{i(1+i)^n}$ – para o cálculo do Valor Atual –

PV – (tecla da HP-12C) = pmt
$$\frac{(1+i)^n-1}{i(1+i)^n}$$

Nesta Modalidade Quatro também tem o Método Hamburguês, conhecido como SAC – Sistema de Amortização Constante e Método Decrescente.

Ambos se equivalem e fundamentam-se no DESCONTO COMPOSTO.

No cálculo dos valores das prestações não têm nem Juro Composto e tão pouco Anatocismo.

Importante : Este cálculo do valor da prestação utiliza as seguintes teclas da HP-12C : n ; i ; PV e pmt = ?

E enfatizam : O Desconto Composto é menos oneroso que o Desconto Bancário.

Δ Analisam os DOIS Estudos do Sr. Price no Século XVIII

■ O estudo da dívida da Coroa Inglesa que se enquadra na Modalidade Três - (1 + i)ⁿ - , com pagamento no final do valor do empréstimo e dos juros acumulados e contém Juros Compostos e Anatocismo.

- Com o valor da Reserva Técnica, o Sr. Price utilizou a Tábua VI e calculou o valor do benefício de Assistidos (aposentados, pensionistas) pmt (tecla da HP-12C); neste Valor do Benefício têm Juros Compostos e Anatocismo.

Importante : Este cálculo do valor do benefício utiliza as seguintes teclas da HP-12C : n; i; FV e pmt = ?

Compare que no cálculo do valor da prestação utiliza-se a tecla PV e neste cálculo do valor de benefícios utiliza-se a tecla FV ;

Vê-se que $fV \neq PV$ Não tem nem Juro Composto e tão pouco Anatocismo

É o PV e mais Juros Compostos e Anatocismo $-(1+i)^n$ e $\frac{(1+i)^n-1}{i}$

- Nestes trabalhos do Sr. Price temos a tecla pmt da HP-12C utilizada para duas tunções :
 - • Valores de Contribuições FV = pmt . $\frac{(1+i)^n-1}{i}$ (n, i) Valor Futuro ; Montante Valor de Contribuições de Participantes Fator de Acumulação de Capital
 - • Valores de Benefícios pmt = FV . $\frac{i}{(1+i)^n-1}$ (n, i)

 Valor de Benefícios aos Assistidos

 Valor Futuro ; Montante

 Fator de Fundo de Amortização

Ver no livro Matemática Financeira nos Tribunais de Justiça, em DESTAQUES INICIAIS, o item 0.2 – CONCEITOS.

Importante : Os trabalhos do Sr. Price não têm quaisquer relações com o estudo da Modalidade Quatro de Pagamentos (Amortizações) de Empréstimos e Financiamentos que tem DOIS MODOS :

SOMA CONSTANTE – Sistema Francês de Amortização que Autores, Professores e Outros erroneamente denominam de Tabela Price

SOMA VARIÁVEL – Método Hamburguês ou SAC ou Método Decrescente

■ Estes dois trabalhos do Sr. Price relacionam-se à MONTANTES e a Modalidade Quatro relaciona-se a VALOR ATUAL que fundamenta-se no DESCONTO COMPOSTO.

Δ Um Investidor analisa projetos para aplicar o seu capital

No estudo de Altas Finanças, para oferecer opções a este Investidor, aplica-se o **Método do Fluxo de Caixa Descontado**.

Este estudo mostra que o projeto apresenta uma projeção de lucro para os próximos 5 anos de R\$ 1.000,00 / ano e assim temos :

Valor Atual = PV =
$$\frac{1000}{(1,10)}$$
 + $\frac{1000}{(1,10)^2}$ + $\frac{1000}{(1,10)^3}$ + $\frac{1000}{(1,10)^4}$ + $\frac{1000}{(1,10)^5}$

Para aplicar neste projeto o Investidor tem uma poupança de R\$ 3.790,78 e deseja uma taxa interna de retorno (TIR ou IRR) de 10%.

Calculando o Valor Atual deste Fluxo de Caixa Descontado encontra R\$ 3.790,78 de Valor Atual -PV- ou seja, o valor da sua poupança.

Conclusão: É rentável.

Δ Outro Investidor que não quer correr o risco empresarial e prefere só correr o risco financeiro, aplica o seu recurso em cinco empréstimos com as seguintes condições :

Pelo Sistema Alemão : 5 empréstimos na mesma data e com vencimentos escalonados em 5 financiados = $\frac{1}{(1+i)^n}$

Com juros antecipados e recebe no fim de cada período – R\$ 1.000,00 :

	VALOR			
	Item do	Líquido	Juros	Prestação nº
	Fluxo de Caixa	Emprestado	Antecipados	11
19 — am 5 anos a tava da junas da 10 000/ a a				
1° = em 5 anos a taxa de juros de 10,00% a.a.				
Valor a Receber (emprestado) – pmt – R\$ 1.000,00				
$1.000 \cdot \left(\frac{1}{(1,10)^5} = 0,619156709\right) =$	5	620,92	379,08	1ª
$2^{\circ} = \text{em 4 anos a taxa de juros de } 10,00\% \text{ a.a.}$				
Valor a Receber (emprestado): R\$ 1.000,00				
$1.000 \cdot \left(\frac{1}{(1,10)^4} = 0,683013\right) =$	4	683,01	316,99	2ª
3° = em 3 anos a taxa de juros de 10,00% a.a.				
Valor a Receber (emprestado): R\$ 1.000,00				
$1.000 \cdot \left(\frac{1}{(1,10)^3} = 0,75131\right) =$	3	751,32	248,68	3ª
$4^{\circ} = \text{em } 2 \text{ anos a taxa de juros de } 10,00\% \text{ a.a.}$				
Valor a Receber (emprestado): R\$ 1.000,00				
$1.000 \cdot \left(\frac{1}{(1,10)^2} = 0.82644628\right) =$	2	826,44	173,56	4ª
$5^{\circ} = \text{em } 1 \text{ anos a taxa de juros de } 10,00\% \text{ a.a.}$				
Valor a Receber (emprestado): R\$ 1.000,00				
$1.000 \cdot \left(\frac{1}{(1,10)} = 0.909090 \right) =$	1	909,09	90,91	5ª
(1,10)		3.790,78	1.209,22	

Ver o Plano de Amortização do Sistema Francês de Amortização

Plano de Amortização do Sistema Francês de Amortização

Item do Fluxo de Caixa	Prestação nº	Valor da Prestação	Valor da Amortização	Valor do Juro	Saldo Devedor
	0	-	-	-	3.790,78
5	1ª	1.000	620,92	379,08	3.161,86
4	2ª	1.000	683,01	316,99	2.486,85
3	3ª	1.000	751,32	248,68	1.735,53
2	4ª	1.000	826,44	173,56	909,09
1	5ª	1.000	909,09	90,91	-
		5.000	3.790,78	1.209,22	-

Observar que cada prestação é um empréstimo pelo Sistema Alemão.

Importante: Os valores dos juros recebidos antecipados, da 1ª a 5ª prestação, podem ser reaplicados com o mesmo financiado ou com outro.

Neste procedimento tem a aplicação da Teoria de Reinvestimento.

Convidamos a fazerem estes procedimentos que encontrarão um resultado interessante.

Também convidamos a aplicar a Teoria de Reinvestimentos aplicando cada prestação recebida até a data do vencimento do contrato.

Podemos concluir:

• A Modalidade UM - Sistema Alemão

e a

Modalidade QUATRO - Sistema Francês de Amortização fundamentam-se no DESCONTO COMPOSTO

- Na Modalidade QUATRO Sistema Francês de Amortização é formado de n empréstimos da Modalidade UM — Sistema Alemão ou seja, cada prestação é um empréstimo pelo Sistema Alemão
- O Sistema Francês de Amortização segue as regras do Método do Fluxo de Caixa Descontado ou seja, fundamenta-se no cálculo do Valor Atual.
- Nesta Modalidade Quatro temos também o Método Hamburguês, conhecido como SAC Sistema de Amortização Constante ou Método Decrescente.

Δ Outro Investidor, além de não querer correr o risco empresarial, decide não ter maiores custos operacionais e decide aplicar em um único empréstimo

Pelo Sistema Francês de Amortização com recebimentos em 5 parcelas iguais e receber R\$ 1.000,00 / mês.

Quanto preciso aplicar: n = 5; i = 15,00%; pmt = 1.000,00 e PV = ?

Calculando o Valor a Aplicar : PV = pmt .
$$\frac{(1+i)^5-1}{i(1+i)^5}$$
 - Tábua V

PV = 1.000 .
$$\left(\frac{(1,10)^5 - 1}{0,10 (1,05)^5}\right) = \frac{0,61051}{0,161051} = 3,7907867 = 3.790,78$$

Pode-se também ter as seguintes condições: n = 5 ; i = 10,00%; PV = 3.790,78 ; pmt = ?

Calculando o valor do pmt = PV .
$$\frac{0,10(1,10)^5}{(1,10)^5-1}$$
 - Tábua III

$$pmt = 3.790,78 \cdot 0,2637974 = 1.000,00$$

Ver o Plano de Amortização no item anterior.

- Δ Um Participante de uma poupança quer investir \$ 1.000,00 pmt durante 5 meses (ano) a uma taxa de juro de 10,00% mês (ano) para receber a partir do 6° mês (ano) um rendimento de \$ 1.000,00 pmt mês / ano
 - No período da poupança FV = pmt . $\frac{(1+i)^n-1}{i}$

FV =
$$1000 \cdot \frac{(1,10)^5 - 1}{0,10} = 6.105,10$$

Reserva Técnica

• No período de benefício

No 6º mês (ano) começa a receber uma renda (aposentadoria) de \$1.000,00

No período do benefício : n = 5 ; i = 10,00% ; FV = 6.105,10 e pmt = ?

Valor do Benefício —
$$\frac{i}{(1+i)^n-1}$$

$$pmt = 6.105,10 \cdot \frac{0,10}{(1,05)^5-1} = 1.000,00$$

• Este período de benefício não tem relação com pagamento de empréstimo pela Modalidade Quatro de Pagamentos (Amortizações) de Empréstimos e Financiamentos.

pmt =
$$3.790,78 \cdot \frac{0,10(1+0,10)}{(1,05)^5-1}$$

pmt =
$$3.790,78 \cdot 0,26375748 = 1.000,00$$

Ver que o valor de PV $(3.790,78) \neq FV (6.105,10)$.

Outro exemplo:

• No período de investimento : n = 12 ; i = 5,00% ; pmt = 11.282,54 ; FV = ?

Valor da Contribuição

FV = 11.282,54.
$$\left(\frac{0.05}{(1.05)^{12}-1} = 15,917128\right) = 179.585,633$$

Reserva Técnica

• No período de recebimento de benefícios : n = 12 ; i = 5,00% ; FV = 179.585,633 ; pmt = ?

pmt = 179.585,633 .
$$\left(\frac{0.05}{(1.05)^{12} - 1} = 0.06282541\right) = 11.282,54$$

• De um empréstimo : n = 12 ; i = 5,00% ; PV = 100.000,00 ; pmt = ?

pmt = 100.000,00 .
$$\left(\frac{0,05 (1,05)^{12}}{(1,05)^{12} - 1} = \frac{0,0897792816}{0,795856326}\right) = 0,1128254$$

$$pmt = 11.282,541$$

Δ Autores e Professores – Referência 10*; o Autor – Referência 2*; Economistas – Referência 11*; 86,36% dos Peritos Judiciais da Região Sudeste – Referência 16* e Outros declaram que a fórmula utilizada para o cálculo das prestações, em parcelas iguais, é também conhecida por Tabela Price ou Sistema Francês de Amortização e é construída com base na Teoria dos Juros Compostos.

O Sr. Price utilizou esta Tábua $\frac{i}{(1+i)^n-1}$ para calcular o valor de benefícios, em valores iguais

para Assistidos (aposentados, pensionistas). Esta fórmula é baseada na Teoria dos Juros Compostos.

Ela não tem relação com a fórmula que calcula os valores de prestações iguais de empréstimos e financiamentos.

Δ Concluindo : O Sr. Price não estudou a Modalidade Quatro de Pagamentos (Amortizações) de Empréstimos e Financiamentos em prestações mensais, iguais e sucessivas e conhecida como Sistema Francês de Amortização.

^{*} Ver no livro Matemática Financeira nos Tribunais de Justiça