This is a reproduction of a library book that was digitized by Google as part of an ongoing effort to preserve the information in books and make it universally accessible.
8

THE LIBRARY

THE LIBRARY

OBSERVATIONS

ON

REVERSIONARY PAYMENTS;

on
SCHEMES FOR PROVIDING ANNUITIES
FOR WIDOWS, AND FOR PERSONS IN OLD AGE; ,
on
the method of calculating the values of assurances on lives;

and on
 THENATIONAL DEBT.

ALsO;
ESSAYS on different Subjects in the Doctrine of Life. Annuities and Political Arithmettc;
A Collection of Nbw Tables, and a Postseript on the Pofulation of the Kingdom.

BY RICHARD PRICE D:D FRS.
 ADDition of algebraical aíd ctitizi hotes, the solutions op several new probigmstinthy doctrine of annuities; and a general introduction. By WILLIAM MORGAN, F.R.S،

SIXTH EDITTION.

VOL. 1.

LONDON:
PRINTED FORT: CADELL AND W. DAVIESINTHE STRAND。
1803.

THE MOSTNOBLE

THE

MARQUIS OF LANSDOWN,

THIS WORK

FORMERLY LNSCRIBED TO HIS LORDSHIP

By thb: Ant

Is now, in the Sixthety
I NS CRIBE $\underset{E}{D}$,
With the same Sentiments of Respect and Esteem,

BY HIS LORDSHIP'S

Most obedient and hamble Servant,

THE EDITOR.

CONTENTS.

V OLUMEI.

С H A P. I.

Questions relating to Schemes for granting Reversionary Annuities, and the Values of Assurances on Lives . page 1.

CHAP. II.

Sect. I. Of Institulions for the RGiefti" of Widlerty, and, particularly, the Lonnoti Anvility and

Supplement to the preceding Siction; condiaining a farther Account of the Institutions for the. Benefit of Widows to the End of the Year 373.L ep. G4.
Sect. II. Of the Association among the London Clergy, and the Ministers of Scotland, for providing Annuities for their Widows p. 104.
Account of a Scheme established among the EastIndia Commandersp. p. 119.
Sect. III. Of the best Schemes for providing Annuities for Widows p. 122.
Sect. IV. Account of some foreign Institutions for the Benefit of Widorws 131.
Sect. V. Of Schemes for providing Life-Annuities which are not to commence till particular Ages; and, particularly of the Societies in London for 7
the Benefit of Old Age; and a Proposal for establishing Life-Annuities in Parishes for the Benefit of the industrious Poor p. 137. Additional Account of the Societies for the Benefit of Old Age p. 154, Sect. VI. Of the Amicable Corporation for a perpetual Assurance Office p. 158. Further Account of the Amicable Corporation, p. 166.

Sect. VII. Of the Society for Equitable Assurances on Lives and Survivorships......, p. 174. Firther Account of the Equitable Society, with an Account of an Institution for the Sale of LifeAnmuities at Hamburgh p. 181,

CHAP. III.

On the proper Method of calculating the Values of Reversions depending on Survivorships .. p. 192. :Firiounh : iof :lhe: Katyest: of the Renerval of Leases, inct of the miet $\overline{0} \dot{t}$ - of computing them p. 200,

On Bhe for calculating the Values of Joint Livesp. 204. Postscript, containing a Specimen of the most expeditious method of calculating the Values of Single and Joint Lives according to any given Table of Observations 210. Account of a Method of deducing from the Correct. Values (according to any Observations) of any Single or Joint Lives at one Rate of Interest, the same Values at other Rates of Interest ...p. p. 221,

CHAP. V.

Containing short and easy Theorems for finding, in all cases, the Differences between the Values of Annuities payable yearly, and the Values of the same Annuities payable half-yearly, quarterly, or momently: In a Letter to Sir John Pringle p. 237. Postscript . p. p. 263.

CHAP. VI.

Of Public Credit and the National Debt \because p. 272. Supplement, containing a History of the Public Funds in general; and particularly of the Sinking Fund 298. Additional Observations by the Editor, containing an Account of three different Plans for redeeming the National Debt, which were formed by Dr. Price, in the Year 1786, and communicated by him at that time to Mr. Pitt the Chancellor of the Exchequer 316. Account of the Funded Debt in the Years 1786 and 1802 by the Editor p. 337 and 338.

NOTES.

Containing Algebraical Demonstrations of the Questions in the first Chapter, E®c.-and also the Sobutions of several new Problems, by the Editor, p. ${ }^{343 .}$

TABLES.

Shewing the Probabilities of Survivorship between two persons of different ages, by the Editor, p. 406 .

$$
\because \quad \vdots
$$

GENERAL INTRODUCTION.

The following invaluable work is one of the fruits of a life which was uniformly devoted to studious enquiry, and to the promotion of the best interests of mankind. The motives that first led the author to engage in these labours were the most humane and honourable, and he considered the success that attended them as the highest reward and gratification he could enjoy. Even in preparing his notes for the former edition, which unfortunately were never completed, he mentions his life as then drawing near its close, but that he had reason to reflect with satisfaction on the time which he had employed in those pursuits.
The different Prefaces which have been affixed to the several editions published by the Author himself, render it unnecessary to

[^0]enter minutely into the origin and progress of this work. But it may not be improper to observe, that the advice and instruction which it contained could not possibly have been communicated at a more seasonable opportunity, than at the time of its first publication in 1769 .-The various Societies for the benefit of age and widows which were then continually rising up to allure and to defeat the hopes of the ignorant and distressed, were become an object of serious concern, and if the evil had not been effectually opposed, it would certainly have proceeded to a much more alarming extent. On the first appearance, however, of this work, the rage for establishing nerw Societies immediately subsided, a partial reformation took place in some of those which had been already formed, and in a short time the greater part of them, convinced of their mistakes, dissolved themselves. A few, indeed, persevered in an obstinate adherence to their original plans, but they have long since exhibited a melancholy proof of their own folly, and of the truth and justice of the admonitions which had been wasted upon them.

It was Dr. Price's intention to have' written a new Preface to the former edition, in which he meant to have continued his account of the state and progress of the few Societies which then remained, and also to have inserted whatever additions and remarks he might have thought necessary to the improvement of the following volumes. -But he died soon after the first of them was printed, and left only a few detached hints and observations in regard to the plan which he was to have adopted. - Being anxious to exert every effort in my power towards fulfilling his intentions, I then endeavoured, though in a much inferior manner, to purste the method which he had pointed out for himself; but in the present edition I have ventured to deviate from that plan, by introducing the remarks which I. had formerly inserted in the preface, together with some additional observations, in the form of notes to the different chapters which treat of those Societies.

Besides the peculiar satisfaction which he derived from this work as having been instrumental in doing much good, Dr. Price was also accustomed to reflect on it with

22
pleasure,
pleasure, as it contained, in his opinion, many improvements in the doctrine of Annuities and in Political Arithmetic.-It was his wish therefore to have rendered it as complete as possible ; and the great number of tables and valuable observations with which he has enriched each edition, and particularly the fourth, are a proof of his zeal and success in accomplishing this purpose.-To the fifth edition a new table was added of the values of two joint lives, computed under his direction from the probabilities of life at Nortbampton, reckoning interest of money at 6 per cent. and also three other tables of the values of single lives, communicated and computed by myself, from the same table of observations at the several rates of 6,7 , and 8 per cent. These I believe were all the newe tables, excepting those in the Appendix, which Dr. Price meant to have added to that edition:-nor did he seem to entertain the most remote idea of making any material alterations either in the arrangement or the matter of the second volume, which he did not live to correct.-When that edition was put to the press it was done in some haste, and his other engagements prevented him
from
from attending to the correction of it before the first two chapters were printed off. Had not this been the case, he meant instead of the present answers to the 11 th and 12 th questions in the first Chapter, to have substituted others from a paper communicated by myself to the Royal Society in the year 1788, which was honoured with their approbation, and published in the 78 th Volume of their Transactions. But being disappointed in this intention, he reserved what he had to say on the subject for a note at the end of the second volume.-As far as relates to these questions I have endeavoured to supply the deficiency. I have also explained some of the notes at the end of the first volume which appeared to me to be too concise, and. have deduced from the real probabilities of life other solutions of such Problems as had been derived from Mr. De Moivre's hypo-thesis,-intending by this means to give a further proof that it can seldom or ever be necessary to have recourse to such an expedient in the doctrine of Annuities.-In consequence of a reference made by Dr. Price in a note at the end of the third Chapter, (Vol. I.) I have inserted all the different rules
respecting
respecting the values of reversions depending: on survivorships between three lives, which I had communicated to the Royal Society in the years 1789, 1791, 1794, and 1800, and which were published in the 79th, 81 st, 84th, and goth Volumes of the Philosophical Transactions. These, like all the other additions I have made, have been kept separate from the work itself; so that, if any errors Whave been committed, they may be easily ascribed to the real author.

As all the solutions in the first Chapter, except those of the 11 th and 12 th questions, are strictly true ${ }^{2}$ according to any table of the probabilities of life, I do not know that this part of the work admitted of any other improvement than the addition in those two questions of correct rules in lieu of the approximations which had been taken from Mr. Simpson's Select Exercises. But in regard to the second Chapter, which contains an account of the different Societies for the benefit of age and widows, the circumstances and even plans of some of these have

[^1]undergone
undergone such considerable alterations since the year 1773, when the fourth edition was published, that it became necessary, in this and the former edition, agreeable to the author's own intention, to give a more accurate account of their state.

In the first Volume of this work ban account is given of a plan for enabling the labouring poor to provide support for themselves in sickness and old age by small weekly savings from their wages. Since, the first publication of this plan Dr. Price had bestowed great attention on the subject ; and being furnished with more information than he then possessed, he was enabled to compute the valuable Tables which are inserted in the Appendix.-These were intended to have served as the foundation of a plan to be established by the dislature, which should hold forth such particular encouragement to the poor as should induce them to give it the preference to those insufficient and erroneous plans which have been so generally adopted in this Kingdom. Nothing could be more important than such. a design. It was founded on the best principles, and had the

[^2]happiest
happiest tendency to assist the poor by encouraging industry and saving, and by raising them above the wretched necessity of depending upon the parish for subsistence when rendered incapable of providing for themselves. The bill for establishing this plan was brought into parliament about twelve years ago, and after having passed the house of Commons was rejected by the Lords.But it is to be hoped that this want of success will not prevent the subject from being resumed hereafter: For its usefulness and importance, when properly understood, can hardly fail to engage every branch of the legislature in its support. It is observed by Dr. Price c that the poor's rate in the year 1777 amounted to $\mathscr{E}_{1,556,804}$. Since that time it has been doubled ; and the truth seems to be, that there is a growing distress among the poor, occasioned most probably by the price of provisions having increased more in proportion than the price of labour ; which renders it almost impossible for a poor man, if he have a wife and family, to subsist on his wages.-This melancholy truth might be proved in the most convincing

[^3]manner from the valuable information communicated to Dr. Price by Mr. Moreton Pitt, the member for Dorsetshire, whose humanity has led him to make particular enquiries into the state of the poor of this Kingdom.But it would be foreign to my purpose to enter into disquisitions of this kind, though I cannot help observing how much it is to be lamented that others have not been stimulated by this benevolent example to make similar enquiries, and to interest themselves in adopting such measures as might effectually relieve the distresses of the labouring poor. By the formation of rational plans for this purpose the many wretched schemes which have so often risen up to delude their hopes would disappear, the indigent labourer and his family might then look forward without anxiety to seasons of sickness and old age, and the more wealthy enjoy the advantage of a reduction in the enormous expence with which the parishes are loaded for the maintenance of their poor.-It is indeed a great misfortune that the different parochial clubs. established in this kingdom should in general be founded on such erroneous principles, and that a disposition so laudable in itself should
not be properly directed and encouraged by the legislature. The funds of these Clubs have, it is true, been preserved by a laie Act of Parliament from the depredations of their treasurers. But it would have been as well, perhaps, if provision had been made in the same Act against the formation of such clubs, or of any Society for the benefit of ${ }^{\prime}$ Age, Widows, \&c. without having previously submitted their plans to some persons competent to judge of their efficiency.---At present they are formed from the crude suggestions of the most ignorant, who in order to procure a sufficient number of subscriptions often propose the most extravagant terms ; so that it soon becomes a matter of very little consequence to the greater pait of the subscribers whether they are robbed by their treasurer, or ruined by the multitude of their claimants. But of all the phantoms which are held up to entice and to deceive the public, none are more mischievous or deserve more severe reprehension than the Tontines which have lately prevailed so much in every part of this country. By these, while the adventurer is flatter'd with the extravagant hope of making his fortune in a
short period and at a small expence, the worst spirit of gambling and idle speculation is called forth, and all those baneful effects which are produced by a State Lottery in London are extended to the remotest corners of the Kingdom. Is it not then a matter of serious concern that this mischievous spirit should derive sanction and encouragement from those who ought to exert every effort in opposing it ? The annual establishment of a State Lottery is now regularly enumerated among the ways and means of the Minister; but of all the wretched measures of finance which have lately been adopted, it is impossible to imagine one so unprofitable to government, and at the same time so deleterious in its consequences to the public. Wretched must be the condition of that country where the morals of the people are sacrificed to the interests of the revenue, and where the public exigencies are provided for by the pernicious assistance of such expedients, While the worst passions of the human mind are thus cherished and maintained by those who ought to exert their power in suppressing them, we may indeed lament the mischievous consequences, but it will be of little avail to
oppose them by the sober efforts of reason and argument.

It was Dr. Price's intention, as appears from some references in the former edition, to have continued his account of the public revenue and expenditure to the beginning of the year 1791.-He had also proposed to have published the three plans for paying off the national debt, which were communicated by him to Mr. Pitt in consequence of an application having been made to him for his opinion and advice on that subject.-One of these plans was adopted by the minister without the slightest acknowledgment, and now forms the foundation of an Act for reducing the public debt, which was established by the legislature in 1786, and contributed more than any other, measure to raise the credit of the late Administration. In order as far as lay in my power to fulfil the intentions of Dr. Price, I have in the first Volume inserted those plans, together with such remarks as were necessary to explain them. These formed a part of a pamphlet published by myself on the subject in the year 1793; which having been long out of
print, I thought so much at least of it might be preserved in this work, as would tend to illustrate the conduct of a Minister, who, whatever may be his pretensions in other respects, does not appear to include gratitude in the list of his virtues.-At the conclusion of these remarks I have also added an account of the National Debt ;-not. indeed at the period to which Dr. Price intended to have brought it, for that would have given a very imperfect idea of its amount, but to the end of the year 1801; from 'which it will be seen how feeble the operations of the best plans must have proved against the accelerated accumulations of the last ten years.

But the chief alterations in this edition will be found in the arrangement of the work. All that related to the same subject I have endeavoured, as far as circumstances would permit, to bring together; so that some of the Chapters which composed the second, now form a part of the first Volume, and on the contrary some Chapters in the first are transposed into the second Volume. By this means the whole is at least rendered more methodical, and the reader, in consequence, when studying any particular subject,

Xiv GENERAL INTRODUCTION,
ject, will not be interrupted, as in the former editions, by having to examine different parts of the work before he finds all that has been written in it on that subject.

Hence the questions concerning Reversionary payments, and the application of those questions to the establishment of Societies for the benefit of Old Age and Widows, are followed by an account of the different Societies of this kind now existing in GreatBritain. In the next Chapter is given the method of calculating the Values of Reversions depending on Survivorships, which appears to have been written chiefly with the view of correcting an error into .which Mr. De Moivre had fallen in the solution of those Problems.-To these succeed an account of the values of the renewal of leases, and a Chapter containing the most expeditious method of computing the values of single and joint lives according to any tables of observation. In the 5 th Chapter are given Theorems for finding the difference between the values of Annuities payable yearly, half-yearly, quarterly, and momently; which, together with the algebraical notes at the end of the first Volume, contain all that
was formerly dispersed throughout the different parts of the work on the subject of Annuities and Reversions.

The National Debt seems to be a subject not immediately connected with any of the other matters of which these volumes are composed. The 6th Chapter, therefore, which treats of public credit, the establishment of a sinking fund, the amount of the public debt, \&c.' is inserted at the end of the 1 st Volume, in order that the whole of what has been written on the expectations of life, the population of the kingdom, and the method of forming tables of observations, might be connected together in the 2 d Volume.

The different Chapters on these subjects constitute a great part of that Volume ; and the remainder, excepting an appendix at the end containing some computations and rules for the better formation of benefit clubs, is entirely occupied by the vast variety of Tables, which render this work valuable above every other publication of the same kind. It is necessary, however, to observe that in this new arrangement not the slightest variation has been made in the text, nor has
any other improvement been intended by the notes and alterations in this edition, than to methodize the general plan of the work, and as far as possible to follow Dr. Price's practice of extending and adapting the information it contains to the circumstances of the present time.
W. MORGAN.

PREFACE

PREFACE

TOTHE

FIRST EDITION.

Before the Reader enters upon this Work, it will not be improper to give him the following information concerning it.
A few years ago, many gentlemen, of the first eminence in the law, formed themselves into a Society, for providing annuities for the widows of all such persons in judicial offices, barristers, civilians, and solicitors, as should chuse to become members. A plan was agreed upon and printed; but, some doubts happening to arise with respect to it, the directors resolved to ask the opinion and advice of three gentlemen, well known for their skill in calculation. This occasioned a further reference to me; and the issue was, that the plan being found to be insufficient, the whole design was laid aside.
vol x .
b
About

About the same time, several other societies were formed with the same views; but all on plans alike improper and insufficient. Finding, therefore, that the public wanted information on this subject, I was led to underfake this work ; imagining, that it might be soon finished, and that all I could say might be brought into a very narrow compass. But ${ }^{\prime}$ in this I have been much mistaken. A design, which I at first thought would give little trouble, has carried me far into a very wide field of enquiry : and engaged me in many calculations that have taken up much time and labour. I shall, however, be sufficiently rewarded for my labour, should it prove the means of preventing any part of that distress, which is likely to be hereafter produced by the societies now subsisting for the benefit of widows. —_I have proved the inadequateness of their plans, by undeniable facts and mathematical demonstration. - I have, further, given an account of some of the best plans, which are consistent with a sufficient probability of permanency and success._-Should, therefore, any of these societies determine to reform themselves; or should any institutions
tutions of the same kind be hereafter established, they will here find direction and assistance.

In Question VI. Chap. I. a general method is described of finding the values, in single and annual payments, of all life-annuities which are to begin after a given term of years ; and, in the 4th Section of the 2 d Chapter, the plans of the societies for granting such annuities are particularly considered, and proved to be extremely deficient._Indeed, the general disposition which has lately shewn itself to encourage these societies, is a matter of the most serious concern; and ought, I think, to be taken under the notice of the Legislature. The leading persons among the present members will be the first annuitants; and they are sure of being gainers : And the more insufficient the scheme is, on which a society is formed, the greater' will be the gains of the first annuitants. The same principle, therefore, that has produced and kept up other bubbles, has a. tendency to preserve and promote these; and, for this reason, it is to be feared, that, in the present case, no arguments will be zatended with any effect. The consideration,
that " the gain made by some in these socie" ties, will be so much plunder taken from " others," ought immediately to engage all to withdraw from them, who have any regard to justice and humanity; but experience proves, that this argument, when opposed to private interest, is apt to be too feeble in its. influence.

It cannot be said with precision, how long these societies may continue their payments to annuitants, after beginning them. A continued increase, and a great proportion of young members, may support them for a longer time than I can foresee. But the longer they are supported by such means, the more mischief they must occasion.-So, a tradesman, who sells cheaper than he buys, may be kept up many years by increasing business and credit; but he will be all the while accumulating distress; and the longer he goes on, the more extensive ruin he will produce at last.

In the latter end of the first Chapter, I have stated very particularly, the method of computing the values of assurances on lives and survivorships, in all cases where no more than two lives are concerned: And, in the third
third Chapter, I have pointed out a considerable error, into which there is a danger of falling in computing some of these values. The societies and offices for transacting business in this way, are very useful; and it is necessary that they should go upon the best principles, and possess all the information that can be given them.

But there is no part of this work in which the public is so much concerned, as the fixth Chapter. It will be there proved, that had the sums raised for public services since the Revolution, been much greater than they have been, the increase of the public debts to their present state might have been prevented in the easiest manner, and at a trifling expence. A method, likewise, of reducing within due bounds these debts, heavy as they now are, will be proposed.-All competent judges will, I believe, see, that this method being founded on the most perfect improvement that can be made of money, is the most expeditious and effectual that the natures of things admit of. Nor, in my opinion, if the nation is not yet too near the limit of its resources, can there be any good reason against carrying it into execution._It is . well
known,
known, to what prodigious sums, money, improved for some time at compound interest, will increase ${ }^{\text {: }}$. A state, if there is no misapplication of money, must necessarily. make this improvement of any savings, which can be applied to the payment of its debts. It need never, therefore, be under any difficulties; for, with the smallest savings,

2 A penny, so improved from our Saviour's birth, as to double isself every 14 years, or which is nearly the same, put out to 5 per cent. compound interest at our Saviour's birth, would, by this time, (that is, in 1773 years) have increased to more money than would be contained in 150 millions of globes, each equal to the earth in magnitude, and all solid gold ${ }^{*}$.

* This computation is made on the supposition that a cubic inch of gold is worth about 351 .-But since a cubic inch of water' is known to weigh 254 grains nearly, and the specifick gravities of standard gold and water are to each other as 18,888 to one, it will follow that a cubic inch of gold, according to the Mint price of 31 . 175 s. $10 \frac{1}{3} \mathrm{~d}$. per 02 . will amount to 381 . 103. $1 \frac{1}{4} \mathrm{~d}$. and consequently that a penny improved at compound interest so as to double itself once in 14 years, from the time of our Saviour's birth to the year 1773, would have accumulated only to 107 millions of such globes as are mentioned by Dr. Price,-but this is abundantly sufficient to prove the strength of his argument.-In the gear 1792, it would have accumulated on the above supposition to 274 millions of those globes.
If instead of supposing money to double itself every 14 years it be improved at 5 per cent. compound interest, the accumulation in 1791 years win amount only to 144 millions, and in 1773 years to no more than 60 millions of globes. The difference therefore between the supposition of money's doubling itself every 4 years and of its being improved at 5 per cent. compound interest, is far from being inconsiderable, especially in a long term of years. . M.
it may ${ }_{3}$ in as little time as its interest can require, pay off the largest debts.

In the first Essay I have made many observations on the expectations of lives, the pernicious influence of great towns on health, and manners, and population ; the increase of mankind; and other subjects in the doctrine of Annuities and Political Arithmetic.In the second Essay I have stated carefully the proper method of forming Tables of the probabilities of human lifé, from given observations : And, at the close of this work, besides several new Tables, I have thought it necessary to give Mr. Simpson's Tables of the values and expectations of London lives. -I I have also, in the notes at the end of the first Volume, given the'Demonstrations of the Answers to the 2uestions in Chap. I. These Demonstrations I have chosen to keep' out of sight in the body of the work, in order to avoid discouraging such readers as may be unacquainted with mathematics.

Upon the whole. A great part of the work now offered to the Public is, I believe,
new; and I am in hopes also, that it will be found to contain some improvements in those branches of philosophical enquiry, which are the subjects of it.

PREFACE

TOTHE
1

THIRD EDITION.

That favourable reception of this Work, which has occasioned the present Edition of it, so soon after two former editions, is such a proof that it has been of some use to the public, as amply rewards me for the attention and labour which I have bestowed upon it. In revising it on the present occasion, I have been anxious about improving it as far as possible. Several additional facts and observations have been inserted in different places, particularly in the First Essay and the Postscript to it.-That part of the Second Section, Chap. II, which treats of the Scotcb establishment, has been new composed, and carefully accommodated to the more accurate information concerning it, with which I have been favoured,

The

The Supplement is an addition which was made to the second edition.- The observations in it on the present state of our population have been a good deal enlarged. -This is a very serious and important subject. If, indeed, there has been that diminution of our people which the evidence I have produced seems to shew, it must alarm every one who wishes well to his country, and it ought to engage the immediate and vigorous attention of government.——Many differ froin me in this point ; and I wish I could find sufficient reason to believe as they do. Several great manufacturing towns have, I know, increased; but these are nothing to the whole kingdom; and even by their increase, our population may, on the whole, have lost more than it has gained. -In truth; it would have been strange if our numbers had not been declining; for I can scarcely think of any great cause of depopulation, which has not for the last 80 years been operating among us.

The prodigious traffic now carried on in Life-annuities, and the rage for forming and encouraging Annuity Schemes, which has for some time been spreading through the kingdom,
dom, has rendered the information which I have meant to convey in the following work particularly necessary. And I have had the pleasure to observe that it has been attended to. Several of the Annuity Societies in London have been dissolved; and there is reason to hope, that those which stili remain will not be able much longer to support themselves on their present plans, in opposition to the evidence of demonstration, and the calls of justice and humanity.-These Bubbles, however, are of little consequence, compared with that GRAND NATIONAL evil, which is the subject of the sixth chapter of this treatise. This is an evil on which I could not imagine, that any such efforts as mine , would make any great impression. Perhaps, indeed, the united efforts of all the independent part of the kingdom would now be too weak to save us from the distress with which it threatens us.

Much has been said for some time of a plan mentioned in Parliament, at the end of the last sesșion, for paying off the NAtional Debt. This raised some expectations;
ations; and I will beg leave here to give a brief account of it.

After providing for all the current services, there remains this year (1773) a saving or overplus of $£_{1,200,000 \text {. With this sum, }}$ and a profit of $£_{150,000}$ from a Lottery consisting of 60,000 tickets, a million and a half of the 3 percent. annuities, purchased at 90 , will be paid off.-When this was proposed to the House of Commons, it was at the same time announced, that it would be the commencement ofa plan for paying off the national DEBT; for, if no extraordinary services should call for any other application of the public surplusses, the same payment increased by the interest of former payments, is intended to be made every year while the peace lasts: And thus, reckoning compound interest at 3 per cent. seventeen mililions will be paid off during a peace of ten years.

On this plan I will take the liberty, with all the deference which becomes me to the station and abilities of the proposer of it, to offer the following remarks.

1st. It

1st. It implies, that there is to be a Lottery every year during the whole continuance of peace.-Formerly, lotteries were expedients for procuring money on more advantageous terms, to which government had recourse, when pressed by the necessities of war. They are now, it seems, to be established as permanent resources never to be given up or suspended.-This must shock every person who is duly acquainted with the mischief occasioned by lotteries, particularly among the lower classes of people. The rage for gaming threatens the ruin of all that is virtuous and manly among us. It is increasing fast, and. wants not to be fostered by government.
$2 \mathrm{~d} l \mathrm{y}$. The surplus of the present year is in part the effect of some extraordinary savings in the last year, (1772) which cannot be expected another year: And, I believe, that those who are best acquainted with this subject, must be sensible that there is no sufficient reason to expect, while the augmentation of the navy is continued, a constant surplus of so much as a million per ann. I mean this on the supposition, that the produce of the Sinking Fund will continue what
it is taken for this year, and what it has been the last three years, or $£ 2,600,000$. But this is certainly more than can be depended on. The difficulties of the East India Company; that stagnation of credit which has lately distressed the public ; and many other causes, may possibly occasion Deficiencies: Should there, however, be an increase, it will be owing, I am afraid, to a very bád cause: I mean, to an increase of our importations proceeding from luxury, and turning the balance of trade against us ; and, consequently, draining the kingdom of its specie, and leaving it more and more to the precarious and dangerous support of paper-money. But,

3 dly , Let the surplus of the public revenue prove what it will, there is too much probability that, even during the continuance of peace, some emergencies or other will be often furnishing reasons or pretences for em-. ploying it in other ways than the payment of the public debts. This has been the case hitherto; and from the year 1730 to the present time, it has never happened, that we have gone on above three or four years together employing surplusses in discharging
debts. Though in profound peace, there have been calls for a different application of them; nor can I imagine what reason there is for believing that our circumstances are so much changed for the better, that there will arise no such calls for ten years to come, should the peace last so long. But,

4thly, The most capital defect in this plan is, that its operation is to cease as soon as a war begins. That is; it is to ceàse at the very time when it would operate to most advantage, and make the quickest progress in redeeming the public debts. This has been demonstrated in the chapter on public credit in this Treatise, and in my Appeal to the Public on the Subject of the National Debt.

Is it then any wonder, that such a plan has had no effect on public credit?--Does it mean any more than that the surplusses of the revenue shall be applied to the discharge of our debts, when there are no other uses for them ?-And was there ever a time when this was not done? Is not this the very plan we have been pursuing these forty years, and to which we owe our present incumbrances?

Certain

Certain it is, that nothing but a plan that shall go on operating uniformly in war as well as in peace, or the establishment of a permanent fund that shall never be diverted; that is, in other words, a return to the scheme adopted by the legislature in 1716; and which even now stands established by law, but which, through the unpardonable misconduct of men in power, has been defeated of its good effects : Nothing, I say, but this can do us any essential service ; or, in our present circumstances, be much more than trifling with the difficulties and dangers of the public.-Establish such a fund-Consign it to a particular commission, acting under penalties, in such a manner as shall take it out of the hands of the Treasury, and form a check even on the House of Commons itself.Supply from time to time all deficiencies just as if no such fund existed; and, by these and other measures, convince the kingdom that something effectual is meant, and that the public debts are indeed in the way to be ex-tinguished.-Let this be done; and we may soon see a new state of things; public credit may revive; and the kingdom enjoy at
least a chance for being preserved.-By the confidence which such a measure would give in government security ; but more especially, by the increasing sums which would be thrown annually into the public markets, and returned to the public creditors, the 3 per cents. would soon be raised to par, and in some time probably far above par. It ${ }^{\prime}$ is well known, what an effect borrowing every year has in sinking funds. Paying every year would certainly have an equal contrary effect. In a time of war, particularly, it would give such a demonstration to the public, that an irrevocable plan of redemption was at last established, as 'could not but produce the happiest effects. It would indeed in these circumstances be necessary to borrow an extraordinary sum annually equal to the appropriation. That is; supposing the fund to set out with a million per ann. it would be necessary to borrow so much more annually than would have been wanted had the fund been capable of being diverted. But this being done to convey a conviction with which the very power of borrowing wasconnected; and to preserve a. fund on which the very being of the state vol. 1.
c
depended;
depended; no bad consequences could follow. The annual charge on the public, occasioned by the war, would be even less than it must have otherwise been. For, let us suppose ten millions necessary to be borrowed every year to defray the expences of war, nine millions only of which would have been wanted, had not the million surplus been locked up. - Suppose farther, that the scheme, by keeping up public credit, and throwing money every year into the hands of lenders, enables government to borrow at $£_{1}$ per cent. less interest than would be otherwise required; that is, at 4 instead of 5 per cent.-In these circumstances, there would arise a present saving to the kingdom of $£ 50,000$ per ann.; for the interest of ten. millions at 4 per cent. is $£ 50,000$ less than the interest of nine millions at 5 per cent. And such a saving, repeated every year of a war, would be an object of some importance to the kingdom.-Indeed, there may be no possibility of conceiving what important effects in this way, the establishment of such a scheme might produce. During its progress in discharging our debts, and before it could give any relief by the annihilation of taxes,
taxes, it might save the kingdom, by preserving it from difficulties which would have sunk it. And every one must be sensible of this, who has considered what danger there is that a war, should it become unavoidable before our debts are put into any certain course of redemption, will either entirely overwhelm public credit, or so much weaken it, as to produce an impossibility of borrowing except on very exorbitant interest, and, consequently, of finding taxes sufficiently productive to pay such interest. The general apprehension now is, that the nation is overloaded; and that its debts will never be paid. This keeps the funds near 18 per cent. lower than they were in the last peace. In the next war such apprehensions will increase, and produce great danger. But should it be then seen, that a plan for redeeming our debts, the most efficacious possible, was going on; and, in consequence of being guarded in some such manner as I have hinted, would not (or could not easily) be revoked; in these circumstances, all danger would be so far lessened, that it might be practicable to find new taxes which would c 2. support
xxxvi • prepace, \&c.
support the expences of warduring the operations of the scheme.

Bút I am got far beyond the limits I prescribed myself when I begun this Preface.As the national debt is a subject unspeakably interesting to this nation, I could not allow myself to omit any thing that appeared to me of consequence upon it; and the Reader of this Treatise will on this account, I hope, excuse me, if I have detained him here too long and too unprofitably. Much has been before said on this subject by writers of more consequence to no purpose ; and we shall pursue the path, we are in, till the edge of the precipice towards which we are advancing awakens us, and ruin becomes unavoidable.-The distress occasioned by the shock lately given to the bubble of papercredit, is, I.am afraid, a prelude to greater calamities, and a warning to prepare for 'hem.

PREFACE

TOTHE
1

FOURTH EDITION.

This work having been for some tine out of print, I resolved about four years ago to prepare for the press a new edition of it, expecting that I should have only a few - corrections and additions to make of no particular consequence. But in this expectation I have found myself greatly mistaken. Such a variety of new matter came in my way, and such means of improving this work were communicated to me, as have led me to bestow upon it more attention and labour than can be easily imagined, and to increase it from one to two volumes.

It is probable that nothing could have engaged me to undertake so much labour had

XXXXViii PREFAEE TOTHE
had I foreseen it ; but having begun, I could not avoid going on ; and I was encouraged by the reflection on the favourable manner. in which the former editions of this work had been received, and also by the hope that on one subject of human enquiry I should be able to produce a work more complete than any that the public has been yet furnished with.

The additions of most consequence in the present edition are the following.

There has been added to the Second Chap. ter an account of several foreign Societies; and a continuation of the history of such annuity societies as are still subsisting in London, to the time when that Chapter was printed off; that is, to the beginning of the year 1782.-The largest of these additions respect the Amicable Corporation for Perpetual Assurances at Serjeant's Inn; and the Society in Cbatham Place for Equitable Assurances on Lives and Survivorships.—— The former of these Societies, should they think proper to look into these observations, will, I am persuaded, find that they require their attention. - But it is the Society

Society last mentioned, which, through the whole of this Treatise, I have had chiefly in view. Having for many years been concerned in advising this Society (the first of the kind in the world, and increasing fast), I have been anxious about giving it all the information and assistance possible.——The additional observations addressed to it in this edition will be found chiefly in this Volume from page 181 to 191 ; and at the end of the Remarks on the 36th Table in the 2d Volume. And, from these observations, it may be learnt in particular, that though this Society, in consequence of having happily begun too high, has already found itself capable of making great abatements in its demands, it is still capable of making farther abatements.

In the former editions of this work, I had intimated that a publication of the tables by which its business is transacted would be proper, together with an account of the principles assumed, and the method taken in composing them. This is an information to which the public has a right, and which is now given it in different parts
of this work, and particularly in the Second Volume at the end of the Remarks on the 36th Table.

Many corrections have been made and several additional notes inserted in the First Essay.' Some of these have been occasioned by two late publications ; one by Mr. Wales, master of the mathematical school at CbristCburch; and the other by Mr. Howlet. See, particularly, the notes in p. 17, 24, 26, and 27 , Vol. II._The Table in p. 70,Vol. II, is also now first inserted.

To the fourth Chapter a Postscript has been added, the principal intention of which is to point out the reasons for discarding the valuation of single and joint lives derived from Mr. De Moivre's hypothesis; and also to describe a method of computing these values from any given tables of mortality, which, while it leaves no possibility of any mistakes, renders such computations as easy and expeditious as their nature will allow.

The third Essay ${ }^{2}$ is the same that it has been in all the former editions. But to the Fourth ${ }^{\text {b }}$ some additions have been made;

[^4]particularly, the notes in p. 88,90, and 91, Vol. II. The first two of these notes have in view a remark' of Mr. Wales's; and the design of the last is, to retract an assertion in the former editions concerning the duration of life in old age in great towns, and to shew the reason why a greater proportion of the inhabitants of London died formerly in old age than have died lately.

But the additions of most consequence are the Tables in the Second Volume, with the remarks explaining the construction, use, and application of them.-In the general introduction to these Tables, and in the remarks on Table XVI. p. 306, it is shewn (and, I think, undeniably) that the Tables of the values of lives deduced from the London bills of mortality err only by giving them too high; and that, with respect to the main body of the inhabitants, the unfavourableness of London to the duration of life continues much the same that it used to be.

Tables I. II. III. and IV. are an abridgement of Mr. Smart's tables of compound interest, and contain all that is important in them.

The

The XVIIth Table, shewing the mean probabilities of the duration of life according to a register of mortality at Northampton, has been inserted in all the former editions; but it is now given more correctly; and tables deduced from it have been added, of the expectations of. life and the values of single lives and of any two joint lives at all ages, and for three rates of interest. The labour of computing these tables was undertaken in order to set aside all occasion for using the defective valuation of lives founded on Mr. De Moivre's hypothesis ; but not having been able to finish these computations till a great part of this Treatise had been printed off, I have been obliged to continue the use of the old tables so far as to take from them many of the examples of the solutions of questions in the first and following chapters.

When tables of the values of two joint lives are given, the values of thrce joint lives may be deduced from them, with perfect ease, by Mr. Simpson's rule inserted in the Second Volume of this Treatise ${ }^{c}$.

This rule saves so much trouble, that I
e See Remiarks at the end of the $36 \mathrm{th} \mathrm{Table}. \mathrm{M}$. 6
have thought it worth while to procure calculations of the XXXVth and XXXVIth Tables, on purpose to determine how far it may be depended on. The result is given in the remarks and comparisons at the end of those Tables. And it seems to appear that it finds the values of three joint lives so nearly as to leave little room for wishing in this instance any greater degree of correctness.

The rules from p. 221 to p. 233, Vol. I. describe a method of deducing, with sufficient accuracy, the value of any life or number of lives at all rates of interest, from the correct value given at one rate of interest.-In computing, therefore, tables of the values of lives, according to any given observations, no more will hereafter be necessary than to compute them for any one rate of interest.

All improvements, however, of this kind would be of little consequence, were there no tables which state correctly the laws that govern human mortality in different situations. One principal part of my business in this work has been to frame such tables; and any one who will look over the collection of tables in the Second Volume, and particularly
larly those from the 41 st to the 47th Table, will see that I have been furnished with the best means of doing this.

With respect to the Tables, in particular, deduced from the Swedish Observations, I cannot hesitate to pronounce that they exceed in correctness every thing of this kind which has been hitherto offered to the public; and that nothing is wanting to make our knowledge in this instance complete, but similar observations in other kingdoms.-By these Tables I have been enabled to state minutely the different rates of mortality at all ages among males and females; and to form tables of the values of single and joint lives for each sex, as well as for both sexes collectively; in consequence of which, I have been farther enabled to determine the increase of the values of annuities payable during survivorship, occasioned by the longer duration of lives among females; and thus to furnish a direction of some importance to the various societies in this kingdom and abroad for providing annuities for widows.

I must not in this place neglect to acknowledge the great obligation 1 am under to Mr. Wargentin of the Royal Academy
of Sciences at Stockholm, for the communications which have enabled me to make the additions to this Treatise last-mentioned. It will be found also, that I have been much indebted to Mr. Oeder of Oldenburgb for several useful communications.

In the observations and rules in page 200, \&c. Vol. I. I have given a general account of the method of computing the values of presentations to livings, and of the renewals of leases held either for terms certain or for lives.

The rules from p. 263 to p. 271, Vol. I. shew how to deduce, from the values given of any annuities payable yearly, their values when payable balf-yearly or quarteriy, or when secured by land and payable halfyearly. And the last Table in p. 271, exhibits the particular differences between these values for two rates of interest.

The collection of Tables is preceded by a Supplement which formed a part of the Third Edition of this work, In the present Edition several notes have been added to this Supplement; but the addition of most consequence is the Postscript on the sub-
ject of the population of the kingdom. In the former Editions, and also in the pub. lication entitled an Essay on the Population of England from the Revolution, \&c. I gave an account of several facts which seemed to me to shew, that our population has declined. Great pains have been taken to prove this to be a mistake ${ }^{c}$. In the Postscript just mentioned, I have entered a little farther into this controversy; and it will appear that though I still retain my former opinion, yet I wish to be considered as far. from being decided in it, and therefore as

[^5]open to receive any evidence which can be produced to overthrow it.

Being willing to comprize in this Edition all that I have written on the duration of human life, and the values of life-annuities, I have inserted Three Essays on these subjects, which have been published in the Pbilosopbical Transactions of the Royal Society.

A pretty copious Index closes the whole.

The additions I shall last mention are those which relate to public credit and the national debt ; and I have chosen to mention them last, on account of their particular nature and importance.

In the Preface to the Third Edition, (see p. Xxvii) I took notice of a plan an-: nounced in 1773 by Lord Nortb to the House of Commons, for paying in the ten following years 17 millions of the public debt. It is necessary I should here just mention, that this plan was never afterwards heard of. _-The remarks. I have made upon it, were followed with a proposal for expediting a plan of redemption in such a manner,
as to cause an appropriation of a million per ann. to discharge, in forty years, a bundred millions of the public debts then bearing 3 per cent. interest. This proposal has not been continued in this Edition, because I intend soon to lay before the public a plan more efficient, and better adapted to the present state of our funds. I must, however, observe that, having now no hope that an efficient plan of redemption will ever be established, I think with regret of the time and attention I have bestowed on this subject. Nothing relieves me, but the reflection that the object about which I have lost my time, has been the removal of an evil which, if no such measures as I have proposed are adopted, must bring on a catastrophe which will make this country a warning and a terror to the world.

At the end of the chapter on public credit I have, in this Edition, inserted a brief 1 history of the Sinking Fund; and also a particular account of the increase of the public debts from 1776 to 1.783 d, and of 'the
state
${ }^{d}$ This account was omitted by Dr. Price in the $5^{\text {th }}$ Edition, but I have endeavoured to supply the deficiency
state of our finances at the time of signing. the Preliminaries of peace in Fanuary last ${ }^{\text {e. }}$ This account is, I believe, as correct as.'it is possible at present to make it ; and I have chosen for many reasons that it should form a part of this work. Hereafter, probably, it will be read with amazement. Our folly, in this instance, is without example. Lord North enjoys the singular distinction of having contributed more to it than any former minister. By a war which has degraded the kingdom, and a dissipation of treasure which was never equalled, he has, in the short compass of seven years, doubled a debt before too heavy to be endured. And let future generations rise up ; and, if possible, let them call him-Blessed ${ }^{\text {f. }}$

> Newington-Green, March 29th, 1783.
in the present Edition by giving the amount of the public debts in 1786, and also at the time of signing the Definitive Treaty of Peace in April, 1802, (p. 337, Vol. I.) M.
c These statements were omitted by the author in the ffth edition.
M.
${ }^{1}$ Had Dr. Price lived to witness the profusion of the last ten years, he would probably have moderated the severity of this censure-The debt which appalled him, when it amounted to 230 millions, has lately swollen to vol. I.
d
the
the enormous mass of 540 millions*, and the yearly expenditure of a peace-establishment which he considered as insupportable at 16 millions, will in future require an annual taxation of more than 34 millions!-The papercirculation which he so justly deplored when he first published this work, appears to have been then only in its infancy: it has now completely.inundated the country. The coin has disappeared, and the Bank, for whose credit he was so apprehensive, has for many years cẹased to pay its notes in specie. The American war, which he regarded as so injurious and disgraceful to the kingdom, has been succeeded by another infinitely more ruinous, and more degrading in its consequences. Had he therefore lived to witness these, and a long train of other calamities which are too deeply felt to need the recital of them - had he lived to behold the Man, during whose administration they were produced, retiring from office in triumph and congratulating the nation on the envied state of prosperity to which it had been lately exalted, he would have changed the object of his resentment, and acknowledged that Lord North had long lost the distinction assigned to him in this preface. M.

[^6]
CHAPTER I.

Questions relating to Schemes for granting Reversionary Annuities, and the Value of Assurances on Lives.

QUESTION I.

\therefore A SET of married men enter into a " society for securing annuities to their wi"dows. What sum of money, in a single "، present payment, ought every member to " contribute, in order to entitle his widow " to an annuity of $£_{30}$ for her life, esti" mating interest at 4 per cent?"

ANSWER.

It is evident, that the value of such an expectation is different, according to the different ages of the purchasers, and the proportion of the age of the wife to that of the husband. Let us then suppose, that every person in such a society is of the same age with his wife, and that one with another all the members when they enter may be reckoned 40 years of age, as many entering above this age as below it. It has been demonstrated by Mr. De Moivre and Mr. Simpson, vol. 1.
that " the value of an annuity on the joint "continuance of any two lives, subtracted " from the value of an annuity on the life " in expectation," gives the true present value of an annuity on what may happen to remain of the latter of the two lives after the other.

In the present case, the value of an annuity to be enjoyed during the joint contivuatice of two lives, each " 40 , b is 9.826 , accarding to the probabilities of life in the Table of Observations formed by Dr. Halley, from the

- Soc Table VIL Vol. LI.
.b The values of joint lives and reversiops, as doducedfrom the Breslaw observations, are not given in any part of this work from Mr. De Moiure's rules in his treatiseion annuities on lives. For these rules are approximations, which givei results so far from the truth, as to he, not only useless, but dangerous. In the $4^{\text {th }}$ Chapter a particular account of this will be given, and also of the method in which these values have been calculated.

Mr. De Moivre has calculated the values of single lives, on the supposition of an equal decrement of life through all its stages till the age of 86 , which he considered as the utraost probable extent of tife. Thus, let there be 56 persods alive at 30 years of age, It is supposed that one will die every year:till; in 56 y years, they will be all dead. The same will happep to 46 at 40 , in 4^{6} years. To 36 at 50 , in 36 years, and so on for all other ages. The number of years which a given life wants of 86 , he calls the complement of that life. Fifty-six, therefora, is the complement of 30 : 4^{6} of 40 , and 3^{6} of 50 .

This hypothesis eases very much the labour of calculating the valucs of lives; and at most ages between z°. and 70, or 75, it is so conformable to Dr. Halley's Table of Observations, that I shall not, in these questions, think it. . neges̃sary to distinguish between the values of single
bills of mortality of Brestaw in Silesia. The' value of a single life 40 years of age, as given by MF. De Moiure, agready to the same Ta-
lives as deduced from this Table; and the same values deduced from the hypothesis,

In order to avoid putting the reader to trouble, I have given this table among other tables in the ad Volume. And I bave also given two tables which. I have formed from the bills of mortalicy at Naxthampton and Noruich, These last answer more nearly to Mr. De Moivre's hypothesis than Dr. Hally's's table s and the difference between the values of single and joint lives by the hypothesis, and the same values computed strictly from the tables, is generally less in these tables than in Dr. Halley's. Whea therefore, in the course of this work the values of singte and joint lives are mentioned, as given agreeably to Dr. Halley's table, it must be understopd, that they are taken From the 6th and 7 th tables, and given in striçt agreement only to the hypothesis; and that for this reason, they are in reality still more conformable to the Northampton and Narwich tables.

The inhabitants of London, as is well known, not living so long as the rest of mankind the values of single and joint lives there, are considerably less than those just mentioned. And, therefore, whenever I have had Lomdon lives in view, I have given particular notice of it, and taken their values from Mr. Simpson, who has calculated them from the London tables of observation. Seq the Tables in the ed Volume.(a)
(a) When this work was first published no other tables of the values of annuities on single and joint lives had been computed from real observations, than those given by Mr. Simpson from the very inaccurate bills of mortality in London. Dr. Price, therefore, at that time was under the necessity, in exemplifying his rules, of having recourse to Mr. De Moivre's hypothesis, which, agreeing nearly with the Breslaw table in the middle stages of life,

he

ble, is 13.20°; and the former subtracted from the latter, leaves 3.37 , or the true number of years purchase, which ought to be paid for any given annuity, to be enjoyed by a person 40 years of age, provided he survives another person of the same age, interest being reckoned at 4 per cent. per annum. The annuity, therefore, proposed in this Question being $£ 30$, the present value of it is 30 multiplied by 3.37 , or $\mathscr{E}^{101} 2{ }^{\text {d }}$.
By calculating from Mr. Simpson's Tables ${ }^{\text {e }}$
he considered as more correct than tables deduced from the decrements of life in a large town, where they are always found to be much higher than among mankind in general.-In the fourth edition, however, new tables were given of the values of Single and Joint lives deduced from observations at Northampton, Sweden, \&c. which have rendered this hypothesis altogether unnecessary, and enabled us to obtain the exact values of Annuities and Reversions in all cases, instead of those values which in the earlier and later periods of life do not even approximate to the truth. \sim But inasmuch as Dr. Price chose to continue his original examples in the two editions which he published after computing the above-mentioned tables, I have not ventured to alter them, but have contented myself with giving the correct values in the notes subjoined, which will be found in general to differ but little from those in the body of the work, owing to the examples having for the most part been confined to the middle stages of life, where the hyputhesis agrees nearly as well with the Northampton, as it does with the Breslaw table of observation.
M.

c See Table VI.

${ }^{\text {d }}$ The annuity by the Northampton table is worth 3.377 years purchase, or $\mathfrak{E} 1016$ s.
${ }^{\text {c }}$ See Tables X and XI. Vol. II.
formed from the bills of mortality of London, this value comes out $£ 102$.

The difference in the value of the reversion will be inconsiderable, whether the common age is taken a few years more or less than 40. Thus married men of 30 ought not, according to Dr. Halley's Table, to give two-fifths' of a year's purchase more, for any given reversionary annuity for their wives, than married men of 50 , provided they are of the same ages with their wives; and one quarter more, according to Mr. Simpson's Table. If the wives are younger (as is generally the case) there will indeed be a considerable difference; for the value now determined would be $£ 120$ according to the Breslaw Observations, supposing the two lives to be 40 and 33, or that wives are one with another seven years younger than their husbands; and $£_{119} 8$ s. according to the London Observations.

QUESTION II.

" Supposing such a society as that de" scribed in the preceding Question, to be " limited to a certain number of members, " and constantly kept up to that number, by " the admission of new members as old ones " are lost, in consequence of their own " deaths, and the deaths of their wives: " What is the number of annuitants which,
" in some time after its establishment, will "come to be constantly upon it ?"

ANSWER.

Since every marriage produces either a widow or widower ; and since all marriages taken together would produce as many widows as widowers, were every man and his wife of the same age, and the chance equal which shall die first; it is evident, that the number of widows that have ever existed in the world, would, in this case, be equal to balf the number of marriages. And what would take place in the world, must also, on the same suppositions, take place in this so-ciety.-_In other words; every other person in such a society leaving a widow, there must arise from it a number of widows equal to half its own number.-But this does not determine what number, all living at one and the same, time, the society may expect will come to be constantly upon it. For if every widow lived no more than a year, the society would never have more annuitants upon it, than came on in a year. And on the contrary, if none ever died, the number of annuitants would go on increasing for ever.${ }^{?}$ Tis, therefore, necessary, in order to answer the present enquiry, to determise how long the duration of survivorship between persons of equal ages will be, compared with the $d u$ ration of marriage. And the truth is, that, supposing the probabilities of life to decrease uniformly,
uniformly ${ }^{\mathfrak{f}}$, the former is equal to the latter; and consequently, that the number of survivors, or (which is the same supposing no second marriages) of widows and widowers alive together, which will arise from any given set of such marriages constantly kept up, will be equal to the whole number of marriages ; or balf of them (the number of widows in particular) equal to balf the number of marriages.-Now, it appears that in most towns the decrease in the probabilities of life, is in fact nearly uniform. According to the Breslaze, the Norwich and Narthampton Tables of Observation, almost the same numbers die every year from 20 years of age to 77^{g}. After this, indeed, fewer die, and the rate of decrease in the probabilities of life is retarded. But this deviation from the hypothesis is inconsiderable; and its effect, in the present case, is to render the duration of survivorship longer than it would otherwise
f That is, supposing that out of any given number alive at any age, the same number will die every year till all are dead. See the preceding note. That on this hypothesis, the duration of survivorship is equal to the duration of marriage, when the ages are equal; or, in other words, that the expectation of two joint lives, the ages being equal, is the same with the expectation of survivorship, may be learnt from the 18 th and 20 th problems of Mr. De Moivre's treatise on annuities; and a demonstration of it, together with a particular explanation of this subject, may be found at the beginning of the first Essay. to which I must beg the reader to turn, if he is at any loss about the full meaning of what is here said.
Sce Tables V. VIII. and XVII. Vol, II.
be. According to the London Table of Observations, the numbers dying every year begin to grow less at 50 years of age; and from hence to extreme old age, there is a constant retardation in the decrease of the probabilities of life ${ }^{\text {h }}$. Upon the whole, therefore, it appears in answer to the present Question, " that according to the tbree "former Tables of Obseryations, and sup" posing no widows to marry, the number "enquired after is somerebat greater than " half the number of the society ; but, ac" cording to the Londan Table, a good deal " greater."

It must be carefully remembered, that this has been determined on the supposition, that husbands and their wives are of equal ages, and that in this case it becomes an equal chance which shall die first. In reality neither of these suppositions is just. Husbands in general are older than their wives; and, in equal ages, the mortality of males has been found to be greater than the mortality of females. For both these reasons, it is much more than an equal chance that the husband will die before his wife, or that the woman shall be the survivor of a marriage, and not the man. This will increase considerably the duration of survivorship on the part of

[^7]the woman, and consequently the number enquired after in this Question. The marriage of widows will also diminish this number, and the operation of these causes will be different in different situations. But it is by no means to be expected (in the situation of the societies I have in view) that the diminution from the latter cause will be considerable enough to overbalance the operation of all the other causes which have been mentioned, and reduce the number under consideration so low, as half the number of marriages ${ }^{i}$.

SCHOLIUM.

In London it appears, that there is a retardation of the decrease in the probabilities of life, which renders the duration of survivorship between \&wo lives of equal ages, considerably longer than their joint continuance. It seems worth observing, that this is the reason why, though the prababilities of life, and therefore the values of single and joint lives, are less in London than in other places, yet the values of reversions depending on survivorships, are in some cases greater there. It is proper to add, that this likewise is the reason why, in calculating the values of joint lives and reversions, the present value of an annuity payable yearly to the survivor of two

[^8]equal lives, may come out equal to, or even greater than, the present value of a like annuity for the joint lives. As an annuity, during such survivorship, will probably not become payable for some years, and therefore the money given for it will-have time to accumulate, it is manifest, that the value of it could never be equal to the value of an annuity on the joint lives, the payment of which begins immediately, were not the ob. servation now made true.

QUESTION III.

" Such a society as that described in the " preceding Questions being supposed; in " what time will the number of annuitants "upon it come to a maximum ?"

ANSWER.

In order to te more clear in answering this Question, I will first suppose the society to comprehend in it from its first establishment, all the married persons of all ages in any town or country, where the number of people continue constantly the same. In this case, the whole collective body of members will be, at their greatest age, at the time of the establishment of the society; and the number of members, together with the number of widows left every year, will, taking one year with another, admit of no increase or diminution. The number of widows in life together, derived from any given number com-
ing on a society every year, will increase continually, till as many die off as are added every year; that is till they come to die off as fast as possible. But they cannot die off as fast as "possible, till the whole collective; body of widows are at their greatest age : or, till there is among them the greatest number possible of the oldest widows; and, therefore, not till there has been time for an accession to the oldest widows, from the youngest part of the widows that come on annually.

Let us, for the sake of greater precision, divide the whole medium of widows that come on every year, into different classes according to their different ages, and suppose some to be left at 56 years of age, some at 46 , some at 36 , and some at 26 . The widows, constantly in life together, derived from the first class, will come to their greatest age, and to a maximum, in 30 years, supposing, with Mr. De Moivre, 86 to be the utmost extent of life. The same will happen to the, second class in 40 years, and to the third in 50 years ${ }^{k}$. But the whole body, composed of these classes, will not come to a maximum, till the same happens to the fourth or youngest class ; that is, not till the end of 60 years. After this, the affairs of the society

[^9]will become stationary, and the number of annuitants upon it of all ages will keep always nearly the same.

Such is the answer to this Question, supposing a society to begin with its complete number of members, consisting of married persons of all ages, in the same proportion to one another, with the proportions in which they exist in the world._If it begins with its complete number of members, but at the same time admits none above a particular age: If, for instance, it begins with 200 members all under 50, and afterwards limits itself to this number, and keeps it up by admitting every year, at all ages between 26 and 50 , new members as old ones drop off; in this case, the period necessary to bring on the maximum of annuitants will be just doubled. For, in the first place, the whole collective body of members will be 60 years in getting to their greatest age, as may easily appear from what has been just said. The annual medium of widows therefore, that will come on the society will increase continually for 60 years; it being evident, that the older any set of married men are, taken one with another, the faster they will leave widows. And after this annual medium is increased to a maximum, 60 years more will be necessary to bring to a maximum the number in life together, derived from such a fixed annual medium constantly coming on.-If
such a society is any number of years in gaining its maximum of members, the time necessary to bring on the maximum of annuitants will be still further prolonged, and will be equal to twice 60 years with that number of years added.-Most of the societies for granting annuities to widows are of this kind: and, therefore, supposing them to gain their complete number of members in ten years, and for ever afterwards to preserve it, the number of annuitants upon them will go on increasing for 130 years-It is proper, however, to be remembered, that the increase will be quicker at first, and afterwards slower; and that, within 20 or 30 years of the end of.this term, it will be so slow as scarcely to be sensible, though still real.

All who will bestow due attention on this subject must see these decisions to be just; and a demonstration of them might be given, in a form more strictly mathematical, were it necessary.

QUESTION IV.

" Suppose the members of such a society " as that described in the preceding Ques: " tions, to chuse making annual payments " during the continuance of marriage, in lieu " 0 of the sum which the reversionary annuity " for their widows is worth in present mo"ney: What ought these annual payments to " be, estimating interest at 4 per cent?"

ANSWER.

This will be easily determined, by finding what annual payments, during two joint lives of given ages, are equivalent to the value of the reversionary annuity in present money.Suppose, as in Question I. the two joint lives to be each 40, and the reversionary annuity \mathcal{E}_{30} per annum. An annual payment during the continuance of two such lives is worth, according to Dr. Halley's Table of Observations, 9.82^{1} years purchase. The annual payment then ought to be such as being multiplied by 9.82 , will produce ${ }^{m} \mathscr{E}^{101.1}$, the present value of the annuity in one payment by Question I. Divide then $£ 101.1$ by 9.82 , and the quotient, or $£_{10.3}$ will be the answer._This is very nearly the annual payment of all the members at an average, supposing equal numbers to offer themselves for admission of every age between 30 and 50. As much as some give less, others

${ }^{1}$ See Table VII. Vol. II.

m Particular notice should be taken of the method of notation here used, because it will be carried through the whole of this work? -The figures on the right hand of the full-point signify the decimal parts of $£_{1}$. Thus; $\mathfrak{E} 101.1$, is 101 and the 10 h of \mathfrak{E}_{1} or \mathfrak{E}_{101} and 25 .$\mathcal{E}_{9} \cdot 39$, is \mathfrak{E}_{9}, and $39^{\text {th }}$ hundredths of \mathfrak{E}_{1} or $\mathfrak{E}_{9} 7^{5}$. $10 \mathrm{~d} .-\mathfrak{E}_{11} .33$, is \mathfrak{E}_{11}, and 33 hundredths of \mathfrak{Z}_{1} or $£_{11} 6 \mathrm{~s}$. 7 d . - In general ; it should be remembered, that 2 shillings allowed for every unit in the first place of decimals, and two pence half-penny for every unit in the second place of decimals, will give, nearly enough, the value of the decimal part of every such expression.
ought ta give more, according to their excess of age. Thus, the annuat payment of a mairied pésson, so years of age, ought to be $\mathscr{E} 9.39$; and of a person 50 years of age,
 of the reversionapy annuity are taken agreeably to the London Table of-Observations, these annual payments will be, for 30 years
 \&14:5.
If either the rate or interest is supposed lower, or wives are supposed younger thans their husbands, the annual payments will be increased. But there is no occasion for pointing out particularly the difference. It may be easily found in any cases by the directions now given. There is, however, one observation which ought to be here earefully attended to.-This imethod of calculation sup-: poses, that the first annual payment is. not

[^10]to be made till the end of a year. If it is to be made immediately, the value of the joint lives will be increased one year's purchase; and, therefore, in order to find in this case the annual payments required, the value in present money found by Quest. I. must be divided by the value of the joint lives increased by unity, and, in this way, the preceding values at 4 per cent. according to the Breslawe Observations, will be found to be £8.62-£9.35-£ 10.07 P-According to the London Observations, $\mathfrak{£} 10,-\mathscr{E}_{11.2,-}$ £12.7.

QUESTION V .

" A society may chuse to make abate" ments in these annual payments, and to " require the remainder of the value of the "' reversionary annuity to be given, in fines "c or premiums, at the time of admission. It " may, for instance, chuse to fix the annual " payments of all the members to 5 guineas. " What, in this case, would be the premium " due at admission, the annuity being sup" posed $\nless 30$ per annum, and interest being " at 4 per cent?"

ANSWER.

From the whole present value of the annuity in one payment, subtract the value of

5 guineas per annum, during the joint lives; and the remainder will be the answer.

Supposing the joint lives, both 40 , the whole present value of the annuity in one payment is, according to the Breslaze Observations, $£_{101.1 \text {, by } Q u e s t . I .-T h e ~ v a l u e ~}^{\text {I }}$ of 5 guineas per annum, or of $£ 5.25$ per annum, during two such joint lives, is $£ 5.25$, multiplied by the value of the joint lives ; that is, 5.25 , multiplied by 9.82 , or $\mathscr{£} 51.55$; and this subtracted from $£ 101.1$, gives $\npreceq 49.55$, the answer required for two lives at the age of 40. The ansiver found in the same way for two lives whose common age is 30 , is $\npreceq 46.5$, -and for two lives at $50, \notin 50$.

According to the London Observations, these values are, for two lives, at 30 , £54.6.-At 40, $£ 59.4 .-$ At 50, $\mathscr{E} 03.3$.

If the first of the annual payments is to be made immediately, the true answer will, in' every instance, be the values found in the manner now directed, diminished by the annual payment; or, in the present case, 5 guineas less than the values specified.

The values, in single and annual payments, of any other reversionary annuity, will be as much greater or less than these, as the annuity itself is greater or less.

[^11]
QUESTION VI.

" A person 35 years of age wants to buy " an annuity, for what may happen to re" main of his life after 50 years of age. " What is the value of such an annuity in " ready money, and also in annual payments, " till he attains to the said age; that is, in " annual payments for 15 years, subject in " the mean time to failure, should his life " fail ?"'

ANSWER.

The present value of such an annuity is the present value of a life at 50 , in money to be received 15 years hence, and the payment of which. depends on the contingency of the continuance of the given life 15 years. That is ; it is equal to the value of a life at 50 , multiplied by the present value of $£_{1}$ to be received at the end of 15 years, and also by the probability that the given life will continue so long.-A life at 50, according to Mr. De. Moivre's valuation of lives, and reckoning interest at 4 per cent. is worth 11.34 years purchase. The present value of $£_{1}$ to be received at the end of 15 years, is, by Table I. Vol. II. 0.5553. And the probability that a life at 35 , will continue 15 years, is, according to the Breslaw Observations. $\frac{346}{490}$ r. And these three values, multiplied

[^12]plied by one another, give 4.44, or the number of years purchase that ought to be given for the annuity. -The annuity then being supposed $\neq 50$ its value in present money is $\mathscr{E} 222$.

In order to find this value in annual payments, while the given life is attaining 50 , it is necessary to find the value of an annuity for 15 years, subject to failure on the extinction of the given life. And the value of such annuity is, evidently, the last value subtracted from the value of the given life; or, in the present instance, 4.44 , subtracted from £13.97. (See Table VI. Vol. II.) that is, $£ 9.53 . \ldots 222$ then, being the present value of an annuity of \mathscr{E}_{50} for the remainder of a life now 35, after attaining 50 ; and 9.53 being the number of
known) the fraction, whose numerator is the number of the living in any Table of Observations opposite to the given age and denominator, the number opposite to the present age of the given life.-Thus, in the present in: stance; 34^{6} is the number in Dr, Halley's Table opposite to 50 , and 490 the number opposite to $35-\frac{3456}{49}$ (or the odds of 47 to 7) is, therefore, the probability that a person whose age is 35 shall attain to 50 , or live 15 years. In the same manner it will appear, that, according to the same Table, the probability that a person at this age shall dive 25 years, is $\frac{242}{4} \frac{4}{9}$; or nearly an even chance.

At Norwich and Northampton a person at the same age, has an even chance of living 26 years; but in London. scarcely 20 years. See Tables V. VIII. XVII. and IX. at the beginning of Vol. II. I will add, though foreign to my present purpose, that a person at the same age has in these towns a better chance of living one year, than in London, in the proportion of 3 to $\%$.
years purchase, which ought to.be given for an annual payment to last 15 years; if a life now 35 lasts so long, it follows that the value of the same annuity in annual payments, till this life attains 50 , is $\mathscr{E} 222$ divided by 9.53 ; or $£_{23.3}$.

This calculation supposes, that the first of the annual payments is not to be made till the end of a year. If the first payment is made immediately, the value will be, the single payment divided by the value of the life for the given term increased by unity ; that is, in the present case, $\mathscr{E} 222$ divided by 10.53 ; or $\mathscr{E}^{21.08^{s}}$.

If the value of the annuity is required in single payment, over and above any given annual payment ; deduct the value of the annual payment from the whole value in a sin:gle present payment, and the remainder will be the answer.-Thus, let 5 guineas, in the present instance, be the given annual payment for the assigned term; and let the en-

[^13]quiry be, how much more in present money the supposed annuity is worth. By what has been just said, 9.53 , multiplied by 5 guineas; that is, $£_{50}$ is the value of the annual payment; and this sum deducted

If the annual payment begins immediately, its value is 10.53 , multiplied by 5 guineas, and the answer comes out $£_{166.75}$.

In this way may be found the value, in single and annual payments, of any other, annuity, payable to an assigned life, after a given term of years, taking any vaiuation of lives or interest of money. But care must be taken to remember, that it is the title to the annuity that will commence at the end of the given term, and that the first payment is not to be made till a year afterwards ; that is, in the case here specified, not till the end of 16 years.

SCHOLIUM.

The value of the remainder of two joint lives, after a given term of years, is likewise the value of \mathscr{E}_{1} due at the end of the given term multiplied by the value of two joint lives, each older by the given term than the given lives; and this product, multiplied by

[^14]the probability, that the given joint lives shat hot fail in the given term ; or (which is the game) by the product of the two probabilities, that the single lives shall each continue the given term. And the value of an annuity, on any given joint lives for a term of years beginning now, is this last value subtracted from the whole present value of the joint lives. Thus; the value of two joint lives, one 40 years of age, and the other 50 , (see Table VII. Vol. II.) is 8.91 ; which, multiplied by 0.6755 , the value of \mathscr{E}_{1} due 10 years hence, and by $\frac{445}{3} \frac{5}{3}$ (the probability that a life at 30 shall continue 10 years) and also by $\frac{346}{44} 5$, (the probability that a life at 40 shall continue 10 years) give 3.92 , the present value of the remainder of two joint lives, aged 30 and 40, after 10 years; and this value, subtracted from 10:43, (the value in Table VII. ibid. of two joint lives, aged 30 and 40) leaves 6.51 , their value for 10 years.

As the value of the longest of two lives is always the value of the joint lives, subtracted from the sum of the values of the two single lives; their value also for any given term, is the value of the joint lives for the given term, subtracted from the sum of the values of the single lives for the given term.

The truth of these rules may easily appear without particular proof. I have, however, pointed out the method of demonstrating
monstrating them in 2 note ${ }^{\text {a }}$ at the end of this work.

By similar operations, may be found the values of three or more joint lives, or the longest of three or more lives, for a given term of years, or of what shall remain of them after a given term of years.

QUESTION VII.

*. The present value is required of an anat nuity to be enjoyed by one life, for what " may happen to remain of it beyond an" other life, after a given term : that is, " provided both lives continue, from the " present time, to the end of a given term " of years ?"

ANSWER.

Find the value of the annuity for two lives greater; by the given term of years, than the given lives. Discount this value. for the given term; and then, multiply by the probability, that the two given lives shall botb continue the given term; and the product will be the answer.

EXAMPLE.

Let the two lives be each 30. The tertn seven years. The annuity \mathscr{E}_{10} Interest, 4 per cent.——The given lives, increased by 7 years, become each 37. The value of two

> - See note (B) at the end of Yol. II.
joint lives each 37, is (by Table VII. Vol. II..) 10.25 . The value of a single life at 37, is (by Table VI. ibid.) 13.67. The former, subtracted from the latter, is 3.42 , or the value of an annuity for the life of a person 37 years of age, after another of the same age, by Quest. I.- 3.42 discounted for 7 years, (that is, multiplied by 0.76 , the value of $£ 1$ due at the end of seven years by Table I. Vol. II.) is 2.6.-The probability that a single life at 30 shall continue 7 years, is (by the hypothesis explained page 2.) $\frac{40}{56} \mathrm{x}$. The probability, therefore, that two
 is.
two such lives shall both continue 7 years, is $\frac{2,40,}{3} \frac{1}{3} \frac{1}{8}$, or, in decimals 0.765 . And 2.6, multiplied by 0.765 , is 1,989 , the number of years purchase which ought to be given for an annuity, to be enjoyed by a life now 30 years of age, after a life of the same age, provided both continue 7 years. The annuity then being $£_{10}$, its present value is $\mathscr{E}_{19.89}$.

By similar operations, it may be found, that supposing the term one year, and the ages and the rate of interest the same, the present value of the same reversionary annuity is $£ 32.4$; and that if the term is 15 years, the value is $£ 9.7$.

For two lives each 40, these values are
 1,7 , or 15 years.

For two lives each 50, the same values for the same terms, are $\mathscr{E} 28.2-\not £_{13.86}$ $£_{4.34^{2} \text {. }}$

These values, according to the London
is $\frac{33}{4} \frac{3}{3}$ subtracted from unity or $\frac{110}{475}$. In like manner : The probability that two persons aged 30 shall boih live 7 years, being 0.765 , the probability that they will not both live so long, or that one or other of them will die in 7 years, is 0.765 subtracted from unity, or .235 .

If any reader is unwilling to take these assertions for granted, he should consult the beginning of Mr. De Moivre's, or Mr. Simpson's Treatises on the Doctrine of Chances, where he will find them demonstrated.
${ }^{r}$ By the Northampton Table $£ 10.03$, and the six
 $\mathfrak{Z}_{7} .61, \mathfrak{E}_{2} 8.65, \mathfrak{E}_{14} 3$, and $\mathfrak{E}_{4} .64$. M.
${ }^{2}$ See Note (C) at the end of Vol. II.
Observations

Observations and Mr. Simpson's. Tables of the values of single and joint lives; are,
For 2 lives at $30-l .33 .05-l .18 .62-l .7 .66$. at $40-$ - $.30 .7-l .15 .6-\quad$ l.5.45. at $50-l .29 .36$ l.12.33-l.3.24.

QUESTION VIII.

" Let the scheme of a society for granting: " annuities to widows, be, that if a member
" lives a year after admission, his widow
" shall be entitled to a life annuity of $£ 20$.
"If seven years, to \mathscr{E}_{10} more, or $\mathscr{E} 30$ in
" the whole. If fifteen years, to another

* additional $\mathscr{E} 10$, or $\mathscr{E} 40$ in the whole.
" What ought to be the annual payments of
ac the members for the ages of 30,40 , and
c 50 , supposing them of the same ages
" with their wives, and allowing compound
" interest at 4 per cent?"
ANSWER.
According to the bypotbesis, explained p. 2; and, therefore, very nearly, according to the Tables of Observation for Breslaw and Norwich, or Tables V. and VIII. at the beginning of Vol. II. £8.44; £8.69; £9.05.

According to the London Observations.

$$
\mathscr{£} 9.41 ; \not £_{10.17 ; ~}
$$

[^15]These

These values are eassily deduced frotn the values in the last Question. For example. The value of $\mathscr{E} 10 \mathrm{per}$ annum for life to 40 after 40, provided the joint lives do not fail in one year, is, according to the bypotbesis, E30.33. The value of $\mathscr{E} 20$ per annum; in the same circumstances, is therefore \$60:66: In like manner, the value of Ero after seven yeats, is eli.44. And of \mathscr{E}_{10} after 15 years $z^{7} 7.3$. These values together make $£ 85.4$, or the value of , the expectation, described in this Question, in a single present payment; which, divided by 9.8in, the value (by Table VII. Vol. II.) of two joint lives at 40 , gives $£ 8.69$, the value of the same expectation in annual payments; during the joint lives. In the same manner may be found the answer in all cases to any Questions of this kind.

These calculations suppose, that the annual payments do not begin till the end of a year. If they are to begin immediately, the true annual payments will be, as was before observed, the single payments, divided by the value of the joint lives increased by unity and in the present case they will be, by the pypotbesis,

$$
\mathfrak{E} 7.75 ; \mathscr{E}_{7.9} ; 8.07 .
$$

> By the London Observations, $\notin 8.52$; $£ 9.06$; $\notin 9.51$.

[^16]By the method of calculation now ex. plained may be easily found in all cases, supposing the annual payments previously setted, what are the reversionary annuities corresponding to them in value. Thus, the annuities being the same with those mentioned in this Question, the mean annual payments for all ages between 30 and 50 , are nearly $£ 8$ according to the bigbest. probabilities of life; $£ 9$ according to the lorvest; and 8 guineas the medium ; ; interest being at 4 per cent. and the first payment to be made immediately.

If the mean annual payments, beginning immediately, are fixed to five guineas, the corresponding life annuities will be nearly (by the bypothesis) £12, if the contributor lives a year, and $£ 24$ if he lives seven years; or (by the London Observations) $£_{12}$ if he lives a year, and $\neq 20$ if he lives seven .. years ${ }^{d}$.

It.
c The value of this expectation, supposing.married men 40 years of age, and their wives 30 , is, in a single payment, \mathfrak{E}_{113}. In annual payments beginning immediately, $\neq 9.88$, by the hypothesis. And \#'107.—and $\mathfrak{E}^{10.93}$, by the London Observations.(b)
(b) By the Northampton Table $\neq 116.4$ and $\neq 10.13$.
d If the annuities in expectation are \mathfrak{E}_{14} provided a member lives a jear, and $£ 20$ provided he lives seven years, the proper mean single payments for all ages, taken one with another, under 50 or 52 , is 50 guineas nearly, according to all the Tables of Obsèvation, supposing equality of age between men and their wives. And the addition

It is observable, that the difference in the values of the annuities, arising from difference of ages and the difference in the probabilities of life, is less in this Question than in Question IV ; and that, consequently; the plan proposed in it, is the safest, as well as the most equitable and encouraging, that a society can adopt. -

It is necessary to remark here further, that yearly payments which begin immediately, are more advantageous than balf-yearly payments which begin immediately. In an Essay published in the Pbilosoptical Transactions, Vol. LXVI. p.' 109, and inserted in the latter part of this volume, I have shewn that in the case of life-annuities, balf-yearly payments which begin at the end of half a year, are nearly a fifth of a year's purchase better than yearly payments which begin at the end of a year. And it is manifest, that
addition which ought to be made, on account of excess of age on the man's side, is, taking the nearest and the easiest round sums, about a guinea and $\frac{1}{2}$ for every year as far as 17 years: or, in the annual payments, (supposed 5 guineas) $\frac{1}{2}$ a guinea per annum for five years excess, and $\frac{x}{2}$ a guinea more for every four years excess beyond five years, till the excess comes to be 17 years. And, I believe, that 6o guineas in single payments, and six guineas in annual payments beginning immediately, may very well be stated as the lowest common payments proper to be required, supposing all married men under 52 , taken into a society, without inquiring into the difference of age between them and their wives, the annuities being all along supposed to be life annuities, and interest'reck oned at 4 per cent.
balf-yearly payments, which begin immedi* ately, are no more than half a year's purchase better than those which begin at the end of half a year. But yearly payments, which begin immediately, are a wobole year's purchase better than the same payments to begin at the end of a year. The difference of value, therefore, between yearly and balfyearly payments, supposing both to begin immediately, is three tenths of a year's purchase in favour of the former. The whole of this subject may be seen accurately stated in the essay just referred to.
QUESTION IX.
"The value is required of an annuity to a be enjoyed for what may happen to re©c main of one life after another, provided " the life in expectation continues a given " time ?"

ANSWER.

Find by Question VI. the present value of the annuity for the remainder of the life in expectation, after the given time, and multiply this value by the probability, that the other life shall fail within that time. Find also by Question VII. the value of the reversion, provided both lives continue the given time. Add these values to one another, and the sum will be the answer in a single present payment.

EXAMPLE.

An annuity of $\neq 10$ for the life of a person now 30, is to commence at the end of 11 years ${ }^{\mathrm{e}}$, if another person now 40, should be then dead ; or, if this should not happen, at the end of any year beyond 11 years in which the former shall happen to survive the latter: What is the present value of such an annuity, reckoning interest at 4 per cent. and taking the probabilities of life as they are in Dr. Halley's Table, or Table V. at the beginning of Vol. II. ?

The value of $\neq 10$ per annum, for the remainder of the life of a person now 30, after 11 years, found by Question VI. is $\mathscr{E} 69.43$. The probability that a person 4δ years of age shall live 11 years, is, by Dr. Halley's Table, $\frac{3}{4} \frac{3}{4} \frac{5}{5}$. The probability, therefore, that he will. die in 11 years, is $\frac{3}{4} \frac{3}{5}$ subtracted from unity ${ }^{f}$, or $\frac{130}{4} \frac{0}{5}$; which mul tiplied by $\notin 69.43$, gives $£_{17.16 \text {. The }}$ value of the reversion, provided both live 11 years, found by Quest. VII. is $£_{17.23}$. And this value added to the former, makes

[^17]$£ 34.39$ the value required in a single present payment; which payment divided by $£_{11.43 \text {, (the value by Table VII. Vol. 1I. }}^{\text {. }}$ of two joint lives, aged 30 and 40, with unity added) gives $£{ }^{5}$; or the value required in annual payments during the joint lives, the first payment to be made immedi-ately.-If, every thing else being the same, the assigned term is 15 years, the value required will be $£ 29$ in a single payment, and $£ 2.55$ in annual payments.

QUESTION X.

" What money in hand, or in annual * payments during life, ought a person of " an assigned age to give for a sum of
g See the demonstration of this rule in Note (D) Vol. II.(c)
(c) This demonstration js derived from Mr. De Muivre's hypothesis, and therefore I have added in the note abovementioned another demonstration founded on the real probabilities of life, from which the following rule is obtained, which is rather more concise than the rule given by Dr. Price.-" Find by Quest. VI. the value of " the annuity for the remainder of the life in expectation " after the given time. Find also by the Scholium to " the same Question the value of the annuity for the " remainder of the two joint lives after the given time. " The latter subtracted from the former will be the value " required."-Thus; the value of an annuity of $£ 10$ on a life of 30 after 11 years is $£ 69.43$-the value of the like annuity during the remainder of two joint lives aged 30 and 40 after 11 years is $£ 35.08$. Subtracting this latter sum from the former we have $£_{34.35}$, as given above, for the value required. By the Northampton Table the value of this annuity is $\mathfrak{£}^{3} 33.77$.
"* money, payable at his death to his heirs ${ }^{4}$?
"، In other words, what money in hand, or " in annual payments during life, ought a " person of a given age to pay for an assu" rance of any given sum on his life ?"

ANSWER.

Subtract the value of the life from the perpetuity. Multiply the remainder by the product of the given sum into the interest of \mathscr{E}_{100} for a year: and this last product, divided by \mathscr{E}_{100} increased by its interest for a year, will give the answer in a single present payment.! And this payment, divided by the value of the life, will give the answer in annual payments, during the continuance of the life.

Example. Let the life be 30. The sum £100. The valuation of lives, that in Table VI. Vol. II. and the rate of interest 4 per cent. The perpetuity, therefore ${ }^{i}$, is 25. The interest of \mathscr{E}_{100} for a year is \mathscr{E}_{4}; $\mathfrak{E} 100$, increased by its interest for a year, is $\mathscr{E}^{0} 04$. And the value of the life 14.68 . The value of the life, subtracted from the
${ }^{n}$ This Question is the same with Problem 16th, in Mr. De Moive's Treatise on Annuities, and Problem 26th, in Mr. Simpson's Select Exercises; but the answers there given are right only when applied to reversionary estates, and therefore must be materially wrong when applied to reversionary sums, as will appear from the Scholium to this Question, and from Note (E) at the end of this Vol.
${ }^{1}$ That is; the value of the fee-simple of an estate found by dividing $\notin 100$ by the rate of interest.
VOI. I. D perpetuity,
perpetuity, gives 10.32 ; which, multiplied by the product of $£ 100$ into 4 , or by $£ 400$, gives 4128. And this, divived by 104, gives $£ 39.7$; the value of $\notin 100$,..payable at the death of a person aged 30_{2}. in a single present payment.-And this payment, divided by 14.68 , is $£ 2.7$, the same value in annual payments during the continuance of the life.

These values found in the same way agree ${ }_{\text {t }}$ ably to the valuation of lives. for London'; in
 If the life is 36 , and interest 4 per. centr these values are \mathscr{E}_{43}, and $\mathfrak{E} 3.1$, by Tabler VI_{W} Vol. II. and \&4.1, by Mr. Simpson's $\sqrt{\text { Ja' }}$ fuation of lives for London in Table XI. If interest is reckoned at 3 per cent. the same values are, by De Moivre's valuation of lives, for 30 years of age, $£ 48.14$, and 2.80 For 36 years of age, $\notin 51.43$, and $\mathfrak{E}_{3.28 k^{k}}$ s

It appears here, that difference of interest makes no considerable difference in the ant swers to Questions of this kind, except when the values are required in a single paymebts:

If the first of the annual payments is to be made immediately, the single payment is to be divided by the value of the life, with unity added to it, agreeably to what has been already observed; and the annual payments. in this case (interest supposed at 4 per cent.)

[^18]will'be by Mr. De Moivre's valuation of lives (or Table VI. Vol. II.) for a life at 30, $£_{2.53-A t ~} 6$, $£_{2.9 .}$

If the payments are half-yearly payments beginning immediately, the single payment must be divided by the value of the life increased by seven tenths, (see Question VIII. page 29.) And the half-yearly payments, for the age of 36 , will be half 2.96 , or $1: 48$. And half 1.48 , or .74 , is likewise nearly the proper quarterly payments.

Again ; if an annual payment, beginning immediately, of $\mathscr{E}^{2.9}$, ought (reckoning interest at A per cent.) to purchase $\mathscr{\neq 1 0 0}$ payable at the failure of a life now 36 ; \sum_{5}, by the rule of proportion, ought to purchase ©172. And in like manner, it may be found, that the same annual contribution, in half-yearly or quarterly payments, beginning immediately, ought to purchase $\boldsymbol{F}^{1.70}-$ These sums, according to the London Obser: yations, are 132 and \mathscr{E}_{130} nearly.

The reason of mentioning these particulars will be seen in the next chapter.

SCHOLIUM.

If the reversion is not a sum, but an annuity forsener, or an estate in fee-simple, to be entered upon after a given life, its present value, ima isingle payment", will be "the value "' of the life subtracted from the perpetuity, " and the remainder multiplied by the an"p puity, or the annual rent of the estate.".

And

And the value, in annual payments, will be, as before, the single payment divided by the value of the life. Universally. It ought to be remembered, that a reversionary estate, after any given life or lives, is worth as much more than a corresponding reversionary sum, as $£_{100}$, increased by its interest for a year, is greater than $£_{100 \text {. Thus, the }}$ present values, in single and annual payments, of $£ 4$ per annum for ever, and of $£_{100}$ in money after any assigned life, are to one another, (interest being at 4 per cent.) as 104 to 100 , or 1.04 to one. The reason of this difference is, that the calculations suppose, that the reversionary sum, and the first yearly rent of the estate, or first payment of the annuity, are to be received at the same time, after the extinction of the lives in possession. It is easy to see, that this is a circumstance which must make the latter of most value. But to prevent any doubts about it, I shall explain it more par: ticularly in a note in the Appendix ${ }^{1}$:

QUESTION XI.

" A person of a given age, having a " yearly income which will fail with his " Jife, wants to make provision for another " person of a given age, in case the latter "' should happen to survive. What ought. " the former to give in a single payment;

[^19]* or in annual payments during their joint " lives for a given sum, payable at his' " death to the latter ?"

It is manifest, that the value of the given sum in this case, must be less than in the case stated in the last Question; because, here the payment of it is suspended on the contingency, that one life shall survive another; whereas, in the other case, it is certainly to be paid at the failure of a given life.

ANSWER.

Find, by the solution of Problem XXXII. p. 297, Mr. Simpson's Select Exercises, the value of an estate, corresponding to the given sum, and depending on the given survivorship. Divide this value by \mathscr{E}_{1}, increased by its interest for a year, and the quotient will be the value of the given sum in a single present payment. And the single payment, divided by the value of the given joint lives, will be the answer in annual payments during the joint lives.

The solution I have referred to is as follows :
" Find the value of an annuity on two " equal joint lives, whereof the common age " is equal to the age of the older of the two " proposed lives; which value subtract from " the perpetuity, and take half the remain" der. Then say, as the expectation of the " duration
"duration of the younger of the two lives
" is to that of the elder, so is the said half
" remainder to a 4 th proportional, which
" will be the number of years purchase to
" be given for the estate when the life in
" expectation is the oldest of the two. But
" if this life is the youngest, then add the
" number of years purchase just found to
" the value of the joint lives, and let the
" sum be subtracted from the perpetuity,
" and you will also have the answer in this
" case ${ }^{m}$."

Let

${ }^{m} \mathrm{Mr}$. Simpson has given the following examples of this solution, adapted to London lives:-Example I. "Suppose the age of the expectant to be 40 , of the pos" sessor 30 . The rate of interest 4 per cent. and the " given legacy \mathscr{E}_{5000} or \mathscr{E}_{200} per annum. Then the " value of two equal joint lives of 40 , being 8.1, (see "Table XII.) and the perpetuity 25 , the remainder or "difference will be here 16.9 ; whereof the half is 8.45 . " Therefore, it will be as 23.6 to 19.6 , so 8.45 to 7.02

Example II. " Let the age of the expectant be 30, of " the possessor 40 , and the rest as in the preceding ex" ample. Here the value of the joint lives 30 and 40 , " will be 8.8 ; which added to 7.02, (found above) the " sum will be 15.82 ; whence the answer, in this case, " is 9.18 years purchase, or $£^{1} 1836$."

I have shewn, that the values of reversionary estates, and reversionary sums, are not the same as is here supposed. The rule gives the true value when applied to the former; but, when applied to the latter, the volues given by it must be divided by \mathscr{E}_{1} increased by its in. terest for a year, as above directed. The same observation is to be applied to Mr. Simpson's next Problem, or the 33^{d}.

In these Examples 23.6 and 19.6, are the expectations, in Table X. of 30 and 40 , according to the London Tables

Let the life in expectation be 30 ; and the other life 40: The sum, \mathscr{E}^{100}. Interest, 4 per cent. The valuation of lives, Mr. De Maivre's, or that in Table VI. Vol. II.

The expectation of the first life, is 28 ; of the second life 23, by Mr. De Moivre's hypothesis. The value of the joint lives is 10.43 . by Table VII. Vol. II. The value of two joint lives, both 40 , is 9.82 , by the same Table. The estate corresponding to $\mathcal{E} 100$ is $£_{4}$ per annum, and the present value of such an estate to be entered upon by a person 30 years of age, provided he survives a person 40 years of age, is, by the rule just quoted, $£^{233.32}$. And this value, divided by $£_{1}$, increased by its interest for a year; or by 1.04 , is $£ 32.03$, the value in a single present payment of the sum of $\int_{100 \text {, de-* }}$ pendent on the given survivorship. And this single payment divided by 10.43 , is £3.07, the required value in annual payments; during the joint lives, if the first payment is not to be made till the end of a year. But if the first payment is to be made immediately, the required value in annual
bles of 'Observation; and the method of finding them for any age, and from any Tables of Observation, is explained at the beginning of the first Essay.

In Mr. De Moivre's hypothesis, the expectation of a life is always half the complement. See note, p. 2. Sometimes the complement of a life is mentioned without any view to Mr. De Moivre's hypothesis, and it then mean's double the expectation of the life, whatever that may be, according to any Table of Observations.
payments will be $\mathscr{E}^{32.03}$, divided by 11,43 , or $\mathscr{E}^{2.8}$. These values, according to the London Observations, or Mr. Simpson's Tables founded upon them, are $\mathscr{E}^{\mathbf{3} 5.30}$, in \mathbf{x}^{\prime} single payment; and £3.6, in annual payments, beginning immediately.

Mr. Simpson, in the Problems following that here quoted, has given solutions of most other Questions, concerning the values of reversions depending on survivorships, where the whole duration of two or three lives is concerned. And I am acquainted with no other solutions of these Questions, which are applicable to all Tables of Observations ${ }^{n}$; and
a The solutions of this and the following Question were certainly the most accurate of all that had been given previous to the fifth edition of this work. About three years before that edition was published, more correct solutions of these Questions were communicated by myself to the Royal Society, and published in the 77th volume of the Philosophical Transactions. These being derived from the real probabilities of life, depend on no hypothesis, and give the exact values in all cases; while the solutions of Mr. Simpson, though applicable to any Table of Observations, are deduced from the expectations of life, and therefore can be regarded only as approximations, even where they happen to be most accurate. In the earlier and latter periods of life, however, they are much too incorrect for use; nor can it indeed be ever necessary to have recourse to them, since the exact values may be obtained with little or no difficulty from the solutions abovementioned. The general rule for determining the value of the reversion in the present Question may be expressed as follows: "Let F represent a life one year "\% younger, and P a life one year older than B. Multi" ply the value of an annuity on the joint lives of A P., \because increased by unity, into the probability that B lives a " year.
which at the same time (proper regard being paid to the correction explained in the last Question)
*year. Multiply the difference between the perpetuity " and the value of an annuity on the joint lives of A B. " into the interest of \mathfrak{E}_{1} for a year. Add these two " products together, let their sum be divided by $\notin 1$, in${ }^{6 \prime}$ creased by its interest for a year, and reserve the quo"tient. Divide the value of an annuity on the joint " lives of A F, by the probability that F lives a year.*Subtract this from the reserved quotient, and the " remainder being multiplied into half the given sum " will produce the value required, when B the expectant " is the oldest of the two lives." If B be the youngest, the value will be obtained, as in Mr. Simpson's rule, by subtracting the value of A's expectation, found above, from the whole value of the Reversion after the joint lives of A and B.

EXAMPLE.

Let it be required to determine the value of \mathscr{E}_{100} payable on the death of A, aged 2_{4},' should B, aged 67° be then living, computing at 5 per cent. and from the probabilities of life in the Northampton Table of Observations. In this case the ages of F and P will be 66 and 68 years. The value of an annuity on the joint lives of AP, by Table XXVIII. and XXIX. Vol. II. is 5.9^{24}, the probability that B lives a year is $\frac{13}{\frac{3}{4} \frac{37}{2} \frac{2}{2}}, 6.924$, (or 6.9^{24} increased by unity,) multiplied into $\frac{13}{\mathbf{T}} \frac{302}{4} \frac{2}{2}$, produces 6.550. The value of an annuity on the joint lives A B, (or 6.130 ,) subtracted from 20 , the perpetuity. leaves 13.8%, which being multiplied into .05 , or the interest of \mathscr{E}_{1} for a year,- produces .694 . Adding this to the former product, and dividing 7.244 , (their sum,) by 1.05, we have 6.899 for the quotient to be reserved. The value of an annuity on the joint lives of A F, (or 6.331, divided by $\frac{14}{1} \frac{4}{5} \frac{2}{3}$ (d), (the probability that F lives a year) quotes 6.675, which being subtracted from 6.899, the reserved
(d) Or, which is the same thing, multiplied into $\frac{135}{515 \frac{2}{2}}$.

Question) may be considered as sufficiently correct ${ }^{\circ}$.

QUESTION XII.

"Suppose an institution for the relief of
s widows to extend its assistance likewise
" to the families of married men, provided
" they leave no widows. Suppose, for in-
" stance, that in this case children are to be
" entitled to $£ 100$. What is such an ex" pectation worth, in present payment, in" terest being at 4 per cent. ?""

ANSWER.

If 40 is the mean age at which members are admitted on such an institution, and 32 the mean age of their wives, the answer (supposing no subsequent marriages) is, by the 3 3d Problem in Mr. Simpson's Select Ext. crcises, p. 298, and the correction already
reserved quotient, and .224 , the remainder, being multi。 plied into' 5 , or half the given sum, we have § $^{\prime} 11 . e 0$, for the value required. If A had been 67 and $B 0_{4}$, the foregoing value must have been deducted from 66.05 , the whole value of the Reversion after the extinction of the joint lives of A and B, found by Question X. and the remainder, or $£_{54.85}$ would have been the answer in this case. These values agree nearly with the values by Mr. Sienpson's rule. But if the difference of age between A and B is very great, or a Table of Observations is used in which the decrements of life are not so regular as in the Nerthampton Table, the values by Mr. Simpson's rule will be found in many cases to be one third wrong. M,

- See the third Clapter.
explained,
explained, $\mathscr{E}_{13.80}$ p, taking the expectations and values agreeably to Mr. De Moivre's hypothesis.

But

PThis Problem and its solution are given by Mr. Simpson in the following words: "A, and his heirs are " entitled to an estate of a given value, upon the decease " of B, provided B survives A; to find the value of "their expeetation in present money."-Solution. "Find "the value of an annuity on the longest of two equal " lives, whereof the common age is that of the older of "t the lives A and B; which value subtract from the " perpetuity, and take half the remainder ; then it will as be, as the expectation of duration of the younger of ${ }^{46}$ the lives A and B, is to that of the older, so is the "said half remainder to the number of years purchase "required, when the life of B is the older of the two. But " if B be the younger; then to the number thus found, " add the value of an annuity on the longest of the lives "A and B, and subtract the sum from the perpetuity, for ** the answer in this case."

If the estate is \mathscr{E}_{4} per annum, the age of B40, and of A 30 , interest 4 per cent, the answer by this rule comes out $\mathfrak{E}_{13} .86$, which divided (as in the preceding Question)
 money. If B is 30 and $A 40$. the same value is $\not £_{15.71 .}$
N.B. The value of the longest of the two lives is always the difference between the value of the joint lives, and the sum of the values of the two given single lives. Thus; the value of a life at 40 , is, by Table VI. Vol. II. 13.2. The sum of the values of two such lives is 26.4 . The value of two joint lives, whase common age is 40 , is, by Table VII. 9.82 ; and the difference is 16.58 , or the value of the longest of two lives at 40. (e)
(e) This rule, like the preceding one of Mr. Simpsan. being deduced from the expectation of life is equally incorrect; and therefore, in most cases, it will be best to adopt the following general rule deduced from the Solution to which I have referred in pag. 40. "Let F, as in * the former question, denste a life one year younger, and

But there is a reduction necessary, on account of the chance there is, that a widower may marry again. Suppose, therefore, one half of all widowers to marry a second and third time, and that two fifths of such widowers
" P a life one year older than: B.-Multiply the value of -" the joint lives of AP, increased by unity, into the proba" bility that B lives a year. Subtract the difference be"tween the joint lives AB and twice the value of the " single life B from the perpetuity and multiply the re" mainder into the interest of \mathfrak{E}_{1} for a year. Let this be " added to the former product, divide their sum by $\mathfrak{E} 1$ in" creased by its interest for a year and reserve the quotient. " Divide the value of the joint lives AF by the probability " that F lives a year-subtract this from the reserved quo"tient, and the remainder being multiplied into half the " given sum will produce the value required."

EXAMPLE.
Let it be required to determine the value of $\mathfrak{£} 100$ payable on the death of B , aged 65 , should that happen after the death of A aged 25 , computing at 3 per cent. and froth the probabilities of life at Northampton. The value of an annuity on the joint lives AP by Tables XXVIII. and XXIX. Vol. II. is 7.123 which being increased by unity and multiplied into $\frac{1}{1} \frac{3}{6} \frac{5}{3}$ 2 (the probability that B lives a year, found by Table XVII.) produces 7.725 . The value of an annuity on the joint lives $A B$ is $7 \cdot 370$.- The value of an annuity on the life of B by Table XIX. is 8.302 , and the interest of \mathfrak{E}_{1} for a year is .03.-The difference between 7.37 and 16.604 (or twice 8.302) being subtracted from 33.333, the perpetuity, and 24.099 the remainder multiphed into .03 producés .723 , which being added to 7.725 the former product, and 8.448 , their sum being divided by 1:03 we have 8.202 for the quotient to be reserved.The value of an annuity on the joint lives AF is 7.611 , the probability that F lives a year is $\frac{1632}{8} \frac{3}{12}$, the former divided
dowers survive these subsequent marriages. In this case, $\frac{1}{2}$ added to $\frac{2}{5}$ of $\frac{1}{2}$, or, $\frac{7}{70}$ of all who become widowers, will die without leaving widows, and therefore ${ }^{7}$ of $\mathscr{E}_{13.8}$, or $£ 9.66$, will be the answer. If only one fourth of all who become widowers marry again; and two fifths of these survive, the answer will be $\mathscr{E}_{11.73}$.

This calculation supposes all marriages to leave children who survive their parents. If this is considered as uncertain, the values now determined must be diminished in the proportion of this uncertainty. Thus; if one marriage in seven fails of leaving children9 that survive their parents; these values will be reduced a seventh part, or to $£ 8.28$, if balf, and $£ i 0.05$, if a quarter of all widowers marry.

In this way may any other questions of the same kind be answered on any suppositions that may be thought most reasonable.
divided by the latter quotes $(f) 7.984$, whioh being subtracted from 8.202 the reserved quotient, and .24\% the remainder, being multiplied into 50 , or half the given sum, we have $\mathscr{E}^{10.90}$, for the value required, Supposing A to be 65 and B 25 years of age, the foregoing sum must be subtracted from 41.761, the whole valusiof the reversion aliter the longest of the two lives of A and B, and $\mathscr{E}_{3} 0.861$, the remainder, will be the value in this case.
${ }^{-1}$ This for many years has been nearly the fact ationg the ministers and professors in Scotland.

QUESTION XIII.

" Let an establishment be supposed which * takes in at once all the marriages in a cc country, or all marriages among persons cs of a particular profession within a given © district, and subjects them for perpetuity " to a certain equal and common tax, or an" nual payment, in order to provide life an${ }^{4}$. nuities forsuch widows as shall result from " these marriages. What ought the tax to :- be, supposing the annuity $\mathscr{E} 20$, and calcu" lating at 4 per cent. from Mr. De Moivre's "، valuation of lives?"

ANSWER.

- Since, at the commencement of such an establishment, all the oldest, as well as the youngest marriages, are to be entitled equally the proposed benefit, a much greater number of annuitants will come immediately upon it, than would come upon any similar establishment, which limited itself in the admission of members to persons not exceeding a given age. This will check that accumulation of money, which should take place at first, in order to produce an income equal to the disbursements at the time when the number of annuitants comes to a maxi, mum; and, therefore; will be a particular burden upon the establishment in its infancy. For this, some compensation must be provided;
and the equitable method of providing it, is by levying fines at the beginning of the establishment, on every member exceeding a given age, proportioned to the number of years which he has lived beyond that age. But in the present question, it is supposed, that such fines cannot be conveniently levied, or that every payment must be equal and common, whatever disparity there may be in the value of the expectations of different members. The fines, therefore, must be reduced to one common one, answering as nearly as possible to the disadvantage I have mentioned, and payable by, every member at the time when the establishment begins. After this, the establishment will be the same with one that thkes upon it all at the time they marry s and the tax or annual payment of every mems ber adequate to its support, will be the gnnual payment during marriage, due from persong who marry at the mean age at which, upon an average, all marriages may be considered as commencing.-There are then two points to be here determined. The fines necessary te be paid at first, according to the account I haved just given; and the constont antual popyesents necessary to be made, pyovery nhember, af an equivalent for: the expectation pravided by the establishment.-The fines to be paid at first are, for every particular member, the same with the difference between the value of the expectation to him at his present age, and what would have been its value to him
had the scheme begun at the time he married? Or, they are, for the whole body of members, the difference between the value. of the common expectation, to persons at the: mean age of all married persons taken together as they exist in the world, and to persons at that age, which is to be deemed their mean age when they marry.

Thus; let 33 for the man, and 25 for the woman, be the mean ages of all that marry annually. Let also 48 be the mean age of all the married men in the world, and 40 of married women :-Now, he that will calculate for these ages, in the manner directed in Quest. IV. will find, that the value in annual payments during marriage, and beginning immediately, of the expectation of an annuity of $\mathscr{E}^{2} \mathbf{0}$ per annum by a person 25 years of age, after a life whose age is 33 , is $\mathfrak{E 6 . 6 4}$. - And that $\mathscr{E} .04$, is the value of the same expectation, the ages being 48 and 40.

The former, therefore is the payment for perpetuity from every member of the establishment; and the value of the difference between it and the latter, or of $£ 1.4$. per ann. payable during two joint lives, whose ages

[^20]cessary to be levied on every married member at the beginning of the establishment. ${ }^{\text {. }}$.

It would be easy to extend the benefit of such an establishment, so far as to 'provide $£_{100}$ for the children of members, provided they leave no widows; and the necessary addition on this account to the perpetual annual payments can scarcely, in the circumstances this question supposes, be much more than about 15 s . payable during life, and excluding from all benefit such as happen to be widowers at the commencement of the establishment, and do not afterwards marry.

If, in such an establishment, all persons of a particular denomination, whether married men, widowers, or bachelors, are subjected alike to the taxes and fines; they ought to be as much less, as the whole number of persons subjected to them, is greater than the number of marriages constantly existing.

In carrying these schemes into execution, there cannot be a more easy, or equitable way of raising the necessary fines, than by providing, that none shall be entitled to any

[^21]vot.I. E
expectation
expectation for a few of the first years, Thus, an establishment, entitling widows to $£ 20$ per annum for life, and consisting of 667 married members, and 344 unmarried, always kept up at an average, ought to begin with a capital of $\mathscr{E}_{14.2}$ multiplied by 667 , or $£ 9471$, besides one payment in hand of the constant annual payments. That is, (the proper annual payment of every member be-
 or $£_{4.38) \text { it ought to begin with a capital }}$ of $£ 13.899$ over and above the payment of $£_{4.38 \text {, at the end of every year for ever }}$ afterwards t . The exclusion of all the first members from any benefit, unless they survive the first two years, or live to make three payments, would raise this capital nearly. And such an exclusion for three or four years, would be an advantage so conssiderable, that it would probably give security and stability to the scheme for all subsequent time.

In these observations, I have had in view some schemes which have been established in this kingdom ; but more particularly, one established by act of parliament among the clergy in Scotland; of which I shall have.

[^22]occasion
occasion in the next chapter to take further notice.

I have chosen to calculate here only from Dr. Halley's Tablo, or Mr. De Moivre's bypothesis grounded upon it, because the Londom Table is, by no means, adapted to the cases in view.

It should be further remembered, that when the mean ages, at which marriages commence, are supposed to be 33 and 25, all second and third marriages are included; and that it is to be expected, that almost all these marriages will begin after these ages; and likewise, that a considerable proportion of the first marriages will begin a much longer time after these mean ages, than any of the other first marriages will begin before them.-Probably, therefore, these mean ages should not be taken younger. One or two years, however, more or less, in every supposition I have made, will make no difference of any consequence.

QUESTION XIV.

"A person of a given age has an estate de" pending on the continuance of his life for "a given term. What ought he to give for "having it assured to him for that term?"

ANSWER.

From the value of an annuity certain for the given term, found by Table IF. subtract the value of the life for the given term, end of the given term, (found by Table I.) by the perpetuity, and also by the probability, that the-given life shall fail in the given term. The product added to the reserved remainder, and the sum multiplied by the given annuity, will be the required value of the assurance in one present payment ".

EXAMPLE.

An estate or annuity of \mathscr{E}_{10} for ever, will be lost to the heirs of a person now 34, should his life fail in 11 years. What ought he to give for the assurance of it for this term?-That is; What is the present value of such an annuity ta be entered upon at the failure of such a life, should that happen in 11 years.'

The value of the life of a person whose age is 34 for 11 years, is; by Quest. VI. (reckoning interest at 4 per cent. and taking Mr. De Moivre's valuation of lives) 7.76; which, subtracted from 8.760 , (the value of an annuity certain for 11 years) leaves 1 the remainder to be reserved.

The value of $£_{1}$ to be received at the end of 11 years, is, 0.6496 , by Table I. Vol. II. The probability that the life of a person, aged 34 , shall fail in 11 years is, by Dr. Halley's Table, $\frac{102}{4} \frac{2}{9}$; and the perpetuity is 25.

- See the demonstration in note (\mathbf{G}) at the end of this volume.

These numbers multiplied by, one another, and 1 added to the product, make 4.32, which, multiplied by 10, (the given annuity) gives $\mathscr{E}_{43.2}$, the required value in a single present payment.
$\mathfrak{E} 43.2$ divided by 1.04 , gives $\mathscr{E} 41.54$ the true value (by Scholium to Question X.) of the assurance of an equivalent sum, or of \mathscr{E}_{250} for 11 years on the given life ${ }^{x}$.
x The premium of assurance for a given sum may be more easily obtained by the following rule: "Find the " value of the life for one year less than the given term. ". Let this value added to unity be divided by $\mathcal{E} 1$ in" creased by its interest for a Year. From the quotient ", subtract the value of the life for the given term, and " the remainder being multiplied into the given sum will " be the value required."

The equivalent annual payments, the first to be made immediately and the others at the beginning of each year, may be found, " by dividing the single premium by the " value of the life, with unity added, for one year less "t than the given term." - In the rules given by Dr. Price. in this question, and the scholium, the first payment is supposed to be made at the beginning, and the last at the expiration of the term. But this method of assurance is never adopted; the annual payments being always made, according to the rule given above, at the beginning of each year.

EXAMPLE.

Let it be required to determine the value of an assurance of \mathscr{E}_{250}, in single and annual payments, for a term of 11 years on the life of a person aged 34, according to the Northampton Table of Observations, and at 4 per cent interest. -The value of the life for 10 years is 7:335, and 8,335 (or 7,335 increased by unity) being divided by 1.04 quotes 8.014 ; from which deducting 7.851, (or the value of the life for i1 years) we bave .169 ; which

Again 41.54, divided by 8.96, (the value of the given life for the given time with unity added to it) gives 4.74, the same value in annual payments, beginning immediately, for 11 years y, subject to failure should the life fail.

SCHOLIUM.

In a similar way may the price of assurances on any two joint lives, or the longest of two lives for any given terms, be calculated; the rule being as follows:
" From the value of an annuity certaio " for the given term, subtract the value of ar the joint lives, or the longest of the two ts lives for the given term, found by Schom " lium to Quest. VI. and reserve the remain, " der.-Multiply the value of $\mathscr{E} 1$ to be re4" ceived at the end of the given term by the " ${ }^{6}$ perpetuity, and also by the probability " that the joint lives, or the longest of the two " lives, shall fail within the given term. ${ }^{46}$ This product added to the reserved re" mainder, and the sumi multiplied by the " annuity to be assured, will be the value of " the assurance in a single present payment.'
which being multiplied into 250 , produces, $\mathbb{E}_{40.75}$ for the value of the assurance in a single payment.-And 40.75 divided by 8.335 gives $\mathscr{E} 4.89$. for the same value in ant nual payments to be made at the beginning of eack year.

$$
\mathrm{M}
$$

7 The last payment to be made at the and of the 13 th year; or 12 payments in all.

EXAMPLE

EXAMPLE.

"What is the value of $£_{10}$ per annum; " to be entered upon, should either of two as persons, one 40, and the other 30 years of " age, die in ten years, reckoning interest " at 4 per cent. and calculating from Dr. " Halley's Table."

The value of two joint lives at these ages, for 10 years, (found by Scholium to Quest.VI.) is 6.51 ; which, subtracted from 8.11, (the value of an annuity certain for 10 years, at 4 per cents.) leaves 1.60 , the remainder to be reserved.

The value of $£_{1}$ to be received at the end of lo years; is .6755 ; by Table I. Vol. It.

The probability; that the lives of one or other of two persons, aged 30 and 40 , shall the in 10 years, is $\frac{y^{8}+5}{3} \frac{5}{3}$ by Table V. ${ }^{2}$. And fail perpetuity 25: These numberf; multiplied by one another, and 1.60 added to the product, make 7,48 , which multiplied by 10 , (the given annuity) gives $£_{74.8 \text {, the an- }}$ swer in a single present payment.
$\mathfrak{£} 74.8$, divided by 1.04, gives $\mathfrak{E}_{71.92}$, the value of the assurance of an equivalent

[^23]sum; or of $£ 250$; $£ 71.92$, divided by 7.51, (the value of the two joint lives for 10 years with unity added) gives 9.57 , the value of the same sum in annual payments beginning immediately, for 10 years, subject to failure should the joint lives fail.

EXAMPLE II,

"What is the value of $£_{10}$ per ann. to "be entered upon, should two persons, one " 30 , and the other 40 , both die; that is, " should the longest of the two lives fail in " 10 years; reckoning interest at 4 per cent. " and calculating from Dr. Halley's Table?" The value of the longest of the two lives for 10 years, (that is, the value of the joint lives for 10 years, subtracted from the sum of the ${ }^{2}$ values of the single lives for 10 years) is 7.91; which, subtracted from 8.11, the value of an annuity certain for 10 years, leaves .20 the remainder to be reserved.The value of $£_{1}$ to be received at the end of 10 years, is, $.6755 .{ }^{\circ}$ The probability that the lives of two persons, aged 30 and 40 , shall fail in 10 years, is, by Table V. ${ }_{{ }^{3} \frac{3}{36}}$ multiplied by $\frac{98}{4 \frac{8}{45}}$ or $\frac{85}{\frac{8}{3} \frac{1}{5} \frac{4}{25} 95}$; and the per petuity 25. These numbers, multiplied by one another, and .20 added to the product, make :740, which, multiplied by 10 , (the
> : See Scholium to Question VI.
given annuity) gives 7.4, the answer in a single payment.
7.4. divided by 1.04, gives 7.11, the walue of the assurance of $\mathscr{E} 250$.

REMARK I.

The values of single lives for given terms, when these terms are less than ten years, must, in answering these Questions, and also in answering the following Questions, be found true to at least 2 or 3 places of decimals. When they cannot be found to this exactness by any Tables, they must be calculated in the following manner :
" Multiply the prabability, taken out of " the Table of Observations, that the life "' shall exist $1,2,3, \& c$. years, by the value " of $£_{1}$ due at the end of $1,2,3,8 \mathrm{c}$. years; 's and the sum of the products will be the " value of the life for $1,2,3, \& c$. years."

For Example. :The probability, that a person whose age is 34 , shall live a year, is, by Dr. Halley's Table, $\frac{499}{409}$. The probability at the same age, of living 2 years, is, $\frac{482}{495}$; 3 years, $\frac{4}{45 \frac{2}{5}-\frac{49}{4} 0} 5$ multiplied by .9615 , (the value, by Table I. of $£_{1}$ due at the end of a year, interest being at 4 per cent.) is, 942 ; or the value of the life for one year- $\frac{483}{5} \frac{1}{9}$, multiplied by .925 , (the value of \mathscr{E}_{1} due at the end of two years) is, 891 . And this added
to the former product, gives 1.838; or the value of the life for two years. $-\frac{472}{49}$ multiplied by 8890 , (the value of \mathscr{E}_{1} due at the end of 3 years,) is, . 841 ; and this product; added to 1.833 , makes 2.674 , or the value of the given life for 3 years.

When the term exceeds 10 years, the rule in Quest. VI. will give these values with sufficient exactness; and it would do the same in all cases, were the values of lives given true to 3 or 4 places of decimals ${ }^{b}$, and in strict argument to the Tables of Observation used.
\because The remark now made is to be extended to the values of joint lives for given terms. Fot these values, like those of single lives cannot be found in solving these Questions with sufficient accuracy, (when the terms are small, and the values of lives ate given only to one or two places of decimals) by any method'; except the redious one, of multiplying the probability that the 2 lives shalt botbl continue, 1, 2, 3, \&c. years, by the value of f_{1} due at the end of $1,2,3$, stc. years, and taking the sum of the products in the manner just described.

[^24]
REMARK II.

If the annuity is to be entered upon, in case of the failure within a given time of any life or lives, at the end of that time; and not at the end of the year in which the failure may bappon; its present value will be the pro duet arising from the continual multiplication by one another of the perpetuity increased by unity, the value of \mathscr{F}_{1} due at the, end of the given time; the annuity, and the probability that the life, or lives, shall fail within the given time. And care should be taken not to confound these two sorts of Questions with one another.-Thus, the value in one payment of floper ank, to be entered upon eleven years hence, in case a person aged 34 should not live so long, is 26 , (the perpetuity increased by unity, interest being at 4 per cent.) multiplied by .6496 , and by \mathscr{E}_{10} and also by $\frac{403}{4} \frac{3}{9}$; or 34.8 . -This value, divided by 1,04 , is 33.5 , the value of an equivalent sum, or of $£ 250$ to be obtained on the same conditions.

The value of the assurance of any ammity on the whole continuance of any single life is, by Quest. X. the excess of the perpetuity above the value of the life, multiplied by the annuity. And in like manner; the value of the assurance of any annuity on the whole continuance of any two joint lives, or the longest of two lives, is the excess of the perpetuity
petuity above the value of the joint lives, or of the longest of two lives, multiplied by the annuity. This is very obvious; but no general method has been yet explained of finding the values of assurances on lives and survivorships for terms of years less than the whole continuance of the lives. For this reason, I have been here more explicit than I should otherwise have been; and as such assurances are now much practised, and may be very useful if their values are rightly determined, I have thought proper to add the two following Questions, which, when joined to Question XI. and Mr. Simpson's 32d Problem given in the note p. 38, will, I believe, exhaust this subject as far as two lives can be concerned.

QUESTION XV.

" B, expectant, will lose a given sum; " should he survive A, within a given time. " What ought he to pay for the assurance of " it ?"-In other words: "What ought he " to pay for a given sum to be received at " the death of A, should he happen to sur" vive him within a given time?"

ANSWER.

Divide the sum of the decrements of life in the Table of Observations from the age of A, for the given time, by the given time ; and, by the quotient, divide the number of the
the living in the Table at the age of A; and again, by this second quotient ${ }^{\text {a }}$, divide the given sum, reserving the third quotient.

Find the value of an annuity on the life of B , for the given time. To this value add the quotient, that will arise from dividing the value of an annuity certain, for the given time, by twice the complement of the life of B; and the sum, multiplied by the reserved quotient, will be the required value in a single present ${ }^{\text {d }}$ payment ${ }^{\text {e }}$.

EXAMPLE.

- When the age of A is under 60 , and the term so large as to exceed the difference between it and 70 , it will be best when the London Table is used, to divide the given sum, not by the second quotient here mentioned, but by the complement, or double the expectation of A.
${ }^{d}$ See the demonstration of this rule, and also of the rule that will be given for solving the next Question, in note (H) at the end of this volume.
- The following rule derived from the solution of the 1 1th Problem (see note G.) is rather more simple, and is so far preferable to the rule given above, as it has been obtained without the aid of Mr. De Moivre's hypothesis, which it is best entirely to exclude from the doctrine of Survivorships. "Divide the sum of the decre" ments of life from the age of A for the given time, " by the given time multiplied into the number of the " living at the age of A , and reserve the quotient. Let " the value of the life of B for one year less than the " given term, with unity added, be divided by $£_{1}$, in"creased by its interest for a year. To the quotient add " the value of an annuity on the life of \mathbf{B} for the given " term, multiply this quantity into the reserved quotient "" and also into half the given sum, and the product will " be the value required."

EXAMPLE.

Let the Table of Observations be Mp. Simpson's for Lordon (see the Tables, in the next volume). Let the rate of interest be 3 per cent. A, seven years of age. B, 30. The given time 14 years. The given sum $£_{100}$. -The sum of the decrentents, for 14 years

EXAMPLE.
Let the respective ages of A and B be 7 and 30 years, the given sum $\mathscr{E}^{2} 100$, the term 14 years, the rate of interest 3 per cent, and the probabilities of life as they are in the Northampton Table.-The sum of the decrements for 14 years from the age of 7 is 865 ; the number of persons living at that age is 5925 , which being multiplied into 14 , and 865 divided by 82950 (the product) we have .0104 for the quotient to be reserved. The value of an annuity on the life of B for 83 years is 9.436 , and 10.436 (or 9.436 added to unity) divided by 1.03 (or \mathfrak{E}_{1} increased by uts interest for a year) quotes $10,13^{2}$; which being added to 9.937 , the value of an annuity on the life of \mathbf{B} for 14 years, and 20.069 (the sum) being multiplied into .0104, (the reserved quotient) and also into 50; (half the given sum) we have $10: 4$ for the value required:-The cathe value by the Lordon Table is $\mathfrak{£}_{11.94}$, or $\mathfrak{E}_{1} 25$. more than Dr. Price makes it to be. But it should' be observed, that when the decrements of A's life for the given term are equal (as they happen to be very nearly by the London Table in the present case) that the exact value of the reversion is obtained by this rule, and therefore that the value by Dr. Price's rule in this instance is one tenth less than the triuth.-This inaccuracy arises from applying Mr. De Moivie's hypothesis to a Table of Observations for which it is by no theaths suited. Had the Northampton, or any other table beetn used, which agrees bereer with this hypothesis, the values by both rules would have been nemily the same.
from the age of seven, is 75 , which, divided by 14 , gives 5.36 . The number of the living at seven is 430 , which, divided by 5.36 , and $\mathscr{E} 100$ divided by the quotient, gives'1.12\% the quosient to be reserved.

The value of an annuity for 14 years on the life of B, is, by Quest. VI. 9.54.-The value of an annuity certain for 14 years, is, (by Table II. Vol. II.) 11.296, which divided 94.4, (twice the complement of the life of B, by Table X^{f}. gives. 12, which, added to 9.54 , gives 9.66 ; and this again multiplied by 1.12 , the reserved quotient, gives 10.82 , the present value in one payment of $£_{100}$, payable at the death of A aged 7 , to B aged ${ }_{30}$, should A die and Ieave B the survivor within 14 years.

The present value for 14 years of two joint lives, one 7 and the other 30 years of age, may be found, by the help of Table XII. and the rule in the Schootium to Quest: VI. to be nearly 9 years purchase; and, $£ 10.82$ divided by this value with unity added, or by 10, gives 1.082, the foregoing value in annnual payments during the joint livess for 14 years, the first payment to be made immediately, and the last payment at the end of 14. years, should the joint lives not fail,

[^25]
SCHOLIUM.

It deserves particularly to be remembered, that in this method likewise may be calculated, what sums ought to be paid on any survivorship, within a given time, of one life beyond another, in consideration of any given sum now advanced.-The following Example of this is a case which has offered itself in practice.
"A person, aged 30, has in expectation " an estate which is to come to him, pro" vided he survives a minor, aged 7 , before " he is out of his minority; that is, pro" vided he should be himself living at the " time of the minor's death, should that hap" pen before he is 21.-In these circum" stances, he wants to borrow $£ 1000$ on his " expectation. What reversion out of the, " estate depending on such a survivorship, is " a proper equivalent for this sum now ad" vanced, interest being reckoned at 3 per "cent. and the probabilities of life being " supposed the same with those in Mr. Simp" son's Table of London Observations ?"

ANSWER.

It appears from what has been just determined, that for $\mathscr{E} 10.82$ now advanced, the proper equivalent in such circumstances, is, $\mathscr{E} 100$ to be paid, in case the survivorship should take place; or, by the correction in
page 35, as much of the estate as $\mathcal{E} 100$ will buy at 3 per cent. supposing the first rent to be received immediately; (that is, supposing the estate worth 34.33 years purchase): or $\mathscr{E}^{2} .912$ per annum. - By the rule of proportion, therefore, for \mathscr{F}_{1000} the proper equivalent will be $£ 2242$ in money, or $£ 269$ per annum out of the estate.

QUESTION XVI.

". $£ 100$ will be lost to B's heirs, should " he happen to die after A, within a given " time. What is the price of the assurance " of it ?-That is: What is the present va" lue of \mathscr{E}_{100} payable at the death of B, " provided his death should happen after A's "death, within a given time?"

ANSWER.
Divide the sum of the decrements of life in the Table of Observations from the age of B, for the given time, by the given time ; and by the quotient divide the number of the living at the age of B ; and again, by this second quotient g , divide the given sum, reserving the third quotient.

Find the value of an annuity on the life A for a number of years, less by one year than the given time, which subtract from the va-

- Or rather, if the London Table is used, by the complement of the life of B, when his age is under 60, and the carm exceeds the differeace between it and 70.

VOL. 1.
F
lue
lue of an annuity certain for the samee number of years. Multiply the remainder by the reservesd quatient, and divide the product by the amount of \mathscr{E}_{1} for one year, and let this be a second reserved quotient.

Again, Multiply into one another the firvat reserved quotient, and the value of an annuity certain for the given time; and divide the product by twice the complement of A's life. This last quotient, added to the second neserved quotient, will be the answeer in a present single payment ${ }^{\text {b }}$.

EXAMPLE

Abstract

${ }^{\text {h }}$. The solution of the 12th question (seendte Gat the end' of this volume) affords an easier and in general a more correct methad of determining the value of this reversion : " Divide the sum of the decrements of life from the age " of B for the given time by the given time multiplied into " the number of persons living at the age of B, and re" serve the quotient. Divide the difference between the " value of an annuity certain, and the value of an an" nuity on the. life of A for one year less than the term, " by $£_{1}$ increased by its interest for a year. Add the " quotient to the difference between the value of an an" nuity certain and the value of an annuity on the life of "A for the given term. Let this quantity be multiplied " into the reserved quotient, and also into half the given. "sum, and the product will be the value required."

> EXAMPLE.

Let the respective ages of B and A be 40 and 30 . The sum $\mathscr{E} 100$. The rate of interest 4 per cent. The term 20 years; and the probabilities of life as they are in the Northeampton Table. -The sum of the decrements of life in this table from the age of 40 , for 20 years, is 1597 , which, divided by 3635 multiplied into 20 (or by the number of persons living at the age of E multiplied into the given term) gives .082 for the quotient to be reserved.-The value.

EXAMPLE:

Let the age of B be 40. Of A 30. The sum $£_{100 . ~ R a t e ~ o f ~ i n t e r e s t ~}^{4}$ per cent. The given time 20 years. The Table of Observations, Mr. Simpíson's, or Table IX. in the next volume- The sum of the decrements of life, in this Table from the age of 40 for 20 years, is 127 , which, divided by 20 , (the given time) gives 6.35 . The number of the living at 40 is 229 , which, divided by 6.35 , gives 36.06 ; and \boldsymbol{E}_{100} (the given sum) divided by 36.06 , gives 2.77, the firsi quotient to be reserved:

The value of an annuity for 19 years on a life at 30 years of age, is 10.45 ; which, subtracted from 13.134, (the value of an annuity certain for 19 years, by Table II.)
value of an annuity certain for 19 years is 13.134 . The value of an apnuity on the life of A for the same time is: 11.144, The difference, or 2 , divided by 1,04 (or $\mathscr{E x}$: increased by its interest for a year) quotes 1.928 . The value of an annuity certain for 20 years is $13 \cdot 590$. The value of an annuity on the life of A for the same term is 11.432.: The difference, or 2.158 being added to 1.929 , makes 4 -081; which, multiplied into o82, the reserved. quotient, and also into 50 , half the given sum, produces F $4 \cdot 489^{\prime}$ for the value sought-By the Lohdon Table this value is $f_{7} 7.71$, which agrees nearly with the value by Dr. Price's rule; and this , will always be the case when the lives are between 20 and 50 years of age. But if one of the lives be very young and the other very ald, this latter rule, when the London Table is, used, will be found exceedingly incorrect. If the computation, however, be. made from the Northampton, or any other table agreeing better iwith Mr. De Moivre's hypothesis, the values, as in Question XV. will be nearly the same by both rules. M.
and the remainder multiplied by 2.77 , gives 7.435. This product divided by 1.04, (the amount of $£_{1}$ in one year) gives 7.15 ; the second reserved quotient.
2.77 multiplied by 13.59 , (the value of an annuity certain for 20 years) gives 37.644 ; and this product divided by 94.4, (twice the complement of A's life by Table X.) gives .399, which, added to 7.15, gives £7.55 the Answer ; or, the value of \mathscr{E}_{100} payable at the death of B , on the contingency of his surviving A aged 30, and botb dying in 20 years.

It is plain, that this is likewise the sum that ought to be lent to B now, on the expectation of $£_{100}$, at his death, provided it should happen after A's death in 20 years.

This rule gives the just solution in all cases, except when B, the expectant, \cdot is the youngest of the two lives, and at the same time the term of years greater than the complement of A's life. In this particular case the following rule must be used.

Find, by the preceding rule, the value of the assurance of the given sum for a term of years, equal to the complement of A's life, and let this value be reserved. Multiply by one another the given sum; the value of \mathscr{E}_{1} to be received at the end of a number of years, equal to the complement of A's life; and the value of an annuity certain for as many years as the given term exceeds this complement. And the product, divided by the
the complement of B's life, and the quotient added to the value reserved, will be the true value sought.

EXAMPLE.

Let the age of B be 30 ; of $A 40$. The term 47 years; and every thing else as in the last Example. The complement of A's life, is, by Table X. 39.2. The value of $£ 100$ to be received at the death of B, if he survives A within 39 years, may be found by the preceding rule to be $£ 16.15$; the value to be reserved-The value of \mathscr{E}_{1} to be received at the end of 39 years is, by Table I. 2166. The value of an annuity certain for 8 years, (the excess of the given term above the complement of the life of A by Table X.) is, 6.733 .

And these two values multiplied by one another, and by $\mathscr{E} 100$ give 145.83 ; which, divided by 47.2 , (the complement of the life of B) and 16.15 , added to the quotient, make $\not{ }_{1} 9.23$, the value sought.

REMARK.
As after finding the present value of an estate, or annuity, it is necessary to divide that value by the amount of \mathscr{E}_{1} in one year: ; in order to find the present value of a sum equivalent to the annuity; so, after finding the value of a sum, it is necessary to multiply that value by the said amount, in order
to find from it the value of an equivalent annuity.

In the first example, therefore, the value of. an estate of $£ 4$ per annum would be $\sum^{2} 7.25$. In the second example \mathscr{E}^{20}. And this is, as it ought to be, the value for the whole duration of the lives, agreeably to the Problem in the note p. $38{ }^{i}$;
'The value of a term, if it fall short of the difference between the age of B and that of the oldest life in the Table of Observations, cannot agree exactly with the value for the whole duration'df life. Indeed it seldom happens that the value of an assurance (unless it be extended to the con': tinuance of both lives) is required for such a term as shall. exceed the limit' of A's life. If this case, howevet, should oecur, its solution may be obtained from the following: ruks: ". Find by the preceding rule (see note p:66) the " value of the assurance for a term of years equat to the " difference between the äge of A and that of the oldest " life in the Table, and let this value be reserved. Find \because by Question XIV. the value of the assurance of the " given sum on the life of B for the whole term, and also " Kor a term which shall be equal to the difference between "the age of A and that of the' oldest life in the Table. " Subtract the tatter from the former ; and the temainder " being added to the value reserued will be the answer ${ }^{\prime}$ "
EXAMPLE.

Let the ages of \mathbf{B} and \mathbf{A} respectively be 30 and 56 . The term 48 years. The sum, the rate of interest, and the Table of Observations, the same as in the Example in note page 66.-The difference between the age of A. amd that of the last life in the Table is 49: The vatue of, $\mathscr{E} 100$ to be received on the death of B after A in 40 years is $\mathfrak{E} 17.13$, which is the sum to be reserved. -The value of an assutrance on the life of B for 48 .yeats, is 37.69 .' The value of the same assurance for 40 years is 35.06 . The : difference, or 2.63, being added to $17 ; 13$, the sum reserved
c.

In solving this Question; care also must be taken not to forget the first Remark under the foregoing Question.

In this chapter, rules have been given for finding the values of all assurances on single lives, and any two lives, or any survivorships between two lives, whether for terms, or their whole duration. In the same way rules may be investigated for finding the values of all assurances on any three lives, or any survivorships between them. But this is a work of more difficulty, and which requires great attention and skill. I can, however, with par ${ }^{2}$ ticular satisfaction acquaint the Reader, that it has been lately executed, in the compleatest manper, by Mr. Morgan, in his Treatise on the Doctrine of Annuities and Assurances on Lives and Survivorshipe ${ }^{k}$.
aboue, we have Fe 19.76 for the value required:-By Dr_{r}. Price's rule this value is $\not £_{19.55 \text {. Had the assurance been }}$ extended to the whiole duration of the lives, the correct value would have been 21.59.-Hence it appears that although the term is :yather longer than in the Exampte givem by Dr. Price, yet that the value of the assurance is by no means the same with its value for the whole life. The dififence, however, is in this case rather too great by both rules, but in neither of them is the error considerable.
${ }^{k}$ These solutions to which Dr. Price refers, having been derived, like all which preceded them, from the expectation, and not from the real probabilitios of life, are liabje to the objections which I have already noticed,(see note, $\mathrm{p} \cdot \mathbf{4 0}$). I have, however, since the publication of the above Treatise, given correct solutions of all the Problems involving. three lives in the survivorship; which the Reader may see

CHAPTER II.

Containing an Application of the 2uestions in tbe foregoing Cbapter to the Scbemes of the, Societies in Great Britain, for making Assurances on Lives and Survivorsbips, and for granting Annuities to Widows, and to Persons in Old Age.

SECT. I.
Of the London Annuity, and the Laudable Societies for the Benefit of Widows ${ }^{1}$.
THE scheme mentioned in Quest. VIII. was nearly that with which the London Annuity Society set out in 1765. The Laudable Society was established in 1761, and formed on a similar plan. In both, the annual contribution of every member was five guineas, payable half yearly; and for this a title was given to an annuity of $\mathcal{E} 20$ to every widow during widowhood, if the husband after admission, lived one year according to the first scheme; or t bree years according to
in the several volumes of the Philosophical Transactions for the years 1789, 1791, 1794, and 1800 ; and the general rules, deduced from these solutions, are inserted at the end of this volume.
${ }^{1}$ It must be remembered, that this section has in view the state of these sucieties in 1771, or at the time of the publication of the first edition of this tract.
the m second; of $£^{30}$, if the husband lived seven years, according to both schemes; and $£_{40}$ according to the first scheme, if he lived 15 years, or 13 years, according to the second. -In both schemes also, there was no other premium or fine required, than five guineas extraordinary, at admission, from every member whose age does not exceed 45. The Laudable Society admitted none above 45, and the London Annuity Society obliged every person between 45 and 55 to pay, at admission, five guineas extraordinary, for every year that he was turned of 45.

These were the main particulars in the schemes on which these Societies were formed; and, therefore, both of them, were the annuities to be enjoyed for life, received (supposing the members all under 46 at admission, and of the same ages with their wives, and money at 4 per cent.) but little more than three-fifths of the true value of the annuities; or about one half, supposing' wives, one with another, 10 years younger than their husbands; as appears from Question VIII.

It appears further in that Question, that,: supposing the annuities to be life annuities, and men and their wives of equal ages; the'

[^26]expectation to which an annual payment of five guineas beginning impaediately, entitles, is nearly $£ 14$ if the contributor lives a year, and $\not \equiv 20$ if he lives seven years ${ }^{n}$, taking the medium between the Londau and the other Tables of Obsefvations,
c. It is likely, that many persons will he very unwilligg to beliewe, that these schemes could have been so deficient as they have been now reprasented, I will, therefare, endeavour to prove this in a way which, though less strict, is sufficiently decijive, and may he monalikely to be intelligible to persons unskilled in mathematical calculation -I shall here confine myself to the scheme of the Landan Annuity Society:: The differences between it and the scheme of the Latudable Society are inconsiderable, and what shall be said of the one: will be fully applicalle to the other.
According to this scheme, as it has been: just degeribed, all that live 15 years in the spciety will be entitled to annuities of $\mathbb{E} 40-$ per anyum, for their widows. Suppose the whole society, at admission, to be men of 40 . years of age, taken one with another. A person of this age has an even chance of living 23 years; and he has an dven:chance of continuing with a wife of the same age, (that

[^27]is, of continuing in the society) $13 \frac{1}{2}$ years: Not much less, therefore, than half the members will continue in the society 15 years; and, consequently, not much less than half the widows that will come upon the soociety will be annuitants of \mathscr{E}_{40} per annum. These widows, however, being older than the rest when they commence annuitants, will continue on the society a shorter time $;$ and, therefore, the number constantly in. Iife together, ta which they will in a course of years increase, will be proportionably smaller. Puting every thing as favourably as possible, let us suppose, that out of 20 annuitants constantly on the society, five will be annuitants of $E 40$, six of F3o, and nine of ef 20 . To 20 annuitants then the sochety will pay $\560 per annum or the 2oth part of this sum, that is 228 to every annuitant at an average. But such an annuity for a' life at 40 , after another equal life, provided both survive one year, is worth, (by Quest. VII. p.23.) in a single present payment, \mathscr{E}^{85}; nearly, according to the London, and all the

[^28]Tables

泊 Of the London Annuity
Tablés of Observations, interest being all along supposed at 4 per cent.

It cannot appear improbable to any one, that this should be the true value of such 2 reversion. It is, not probable, that there is any situation in which the decrements of life are such as can make it a tenth paft more or less. $-£ 85$ ' in present payment is the same with $£^{3}$...8s per annum for ever:-But,is an annual payment of five guineas, which must cease as soon as either of two lives each 40 fails, equal in value to such a perpetuity? Every one must see, that there is a great dif-ference.-A set of marriages between persons all 40, will, according to the probabifities of life in Dr. Halley's Table, last, one with another, 15 years ${ }^{\mathrm{P}}$; and an annual payment beginning immediately, during the joint continuance of the lives of two persons of this age, is worth 10 years purchase 9 .

- See thie beginning of Essay I.
: The yalue of such an annual payment; by Table XII. or the London Observations, is 9.1 ; and 10.8 , by Mr . De Moive's hypothesis.-I have not taken into this account the five guineas fine paid at admission, because it is obviously of too little consequence to make any considerable difference. The allowances I have made in favour of these schemes are more than equivalent:to it. In particular, it-should be remembered, that the calculations suppose; that the payments required by these schemes, are ybarly payments beginningrimmediately $;$ i (see p. 29.) and that the first payment of the annuity is' not to be made titt the end of the year in . which the husband shall die; and also, that the annuity is to be: paid yearly, and no. thing to be due for any part of the year in which the anxaitaní shall happen to die.

The comparison then, in the present case, is between E3:.. 8s. per annum for ever, and five guineas per annum for 15 years; or between an annuity of $\mathscr{E}_{3} .8$ s. worth 25 years purchase, and an annuity of five guineas worth only 10 years purchase.
: But to throw this subject into another light:
Let the number to which the society is kept up be supposed to be 200. It has been demonstrated in Quest. II. that at least half this number of widows will in time come to be constantly on the society; and it has also been just now shewn, that the medium of annuities payable to them, will be at least E28. After a course of years; then, the society will have a constant expence to bear of $£^{2800}$ per annum.-But what will be its income?-In order to determine this, we must considet, that there are two sources' from whence its income will be derived. First, the annual payments of the members. And, secondly, the money accumulated, or the capital raised during the time the number. of annuitants is coming to a maximum.The first of these sources affords 1000 guineas, or $£ 1050$ per annum. This wants' \mathscr{E}_{1750} of the annual expence just mentioned; and, therefore, in order that the income of the society may be equal to the burden upon it, when the annuitants come to amaximum, there must be a fund raised in the mean time equal to $£ 43,750$, or to an estate in

98 Of the London Annuity
in perpetuity of ely so per annizin-But E1050 per ànum beginning immediately and forborn 25 years, and improved with: out loss or delay, all that time at 4 per cent, compound interest, will but just Fise such a capital!. There is therefore, the fullest proof that the scheme I am considering is extremely deficient. The truth is, that scarcely a third of such a capital could be raised, as will appear from the following observations.

Out of 200 persons, all 40 years of age, more than five, according to the London Table of Observations, and not so many by Dr, Halley's Table, may be expected to die in a year. Suppose then five to be the real num.ber of members that will die in the first year of the society. In subsequent years the collective body of members will be continually growing older; and, therefore, the proporton of them that will die every year, will be continually increasing, till it gets to 2 maximum. I will, however, suppose, that during the first 20 years no more than the number just specified will die every year; and that, consequently, no more than five weidereis

[^29]will
will émè every year on the society. - The ages of alf thiese wieldows, when they commence wifo whobd, will, it is evident, bé between 40 and 6 . Qhe with another then, they may be considèred ds" having cómmettléd wido whood at 30 'y ears of age. Now: five widows left every year at this age, will, in' 10 ' years, - increase to " 43 constedroty in' fife toiserhet, according to the expectations of life ifr Tables V , WITF; and XVIT; and, iń 20 yeats', to 70%. Sappose the true number alive together at the end of 20 years to be otly'62!: The gireater patt of these will be - annuittants of $\neq 3 \sigma$ and $\notin 40$ per ann. and the rest E2': ' Were the former only equal to the latter, the medium of annuities payable to them would exteed $\neq 25$.' Suppose theh this mèdium to bee no more than e 26 , ahd it will follow, that, at the end of 20 years, the society will have dn annual rent to pay

[^30]of $£ 26$ multiplied by 62 , or $\mathfrak{£}^{2612}$; and, if then able to bear such an expence, it must, in the intermediate time, have acquired an increase of income equal to the difference between $£ 1050$ and $£_{1612}$ per ann. That is; it must, with its savings, have accumulated a stock equal to $\mathfrak{E} 562$ per ann. and worth $\mathscr{E}_{14,050 \text {. But as, during this time, }}$ there will be a number of annuitants constantly increasing, to whom yearly payments must be made, the savings cannot certainly be one half of what they would have been had the society been all the time free from all burdens. Suppose then the stock produced by these savings, to be equal to the stock that would arise from an income of \mathscr{E}_{1050} per ann. beginning immediately, and improved perfectly at 4 per cent. compound interest, for half the time I have mentioned, or for 10 years, without being subject to any checks or deductions: Such an income thus improved, would in 10 years produce an additional income of $£ 504$ per: annum, or a capital of $\mathscr{E}_{12,600}$.-According to these Observations, therefore, the annual income of the society at the end of 20 years, and before a third part of the highest annuitants could come upon it, would fall considerably short of its expences. About that time then it would necessarily run aground; and long before the number of annuitants could rise to 100 , it would spend its whole stock,
and find itself under a necessity of either doubling the annual payments of its members, or of reducing the annuities one half.

All I have now. said is meant on the supposition, that the society begins with 200 members at 40 years of age, and is afterwards limited to that number, by admitting no more new members than will just supply the vacancies occasioned by the loss of old members. If it is allowed to increase, it may continue a longer time. And, for this reason, a society that wants half the income necessary to render it permanent, may very well subsist, and even prosper for 30 or 40 years.-Thus; the Laudable Society, was it to keep to its present number of members, might possibly feel no deficiencies for 20 years to come; but if it should continue to increase at the rate of 70 or 80 every year, it would, at the end of that time, possess a balance so much in its favour as might enable it to support itself for 15 or 20 years more t. But bankruptcy would come at last,

[^31]and with the more weight the longer it had been deferred.

The rule in the London Annuity Society, which obliges every person between the ages of 45 and 55 , to pay at admission 5 guineas extraordinary for every year that he exceeds 45 , is an advantage to it, but it is a very inadequate, and also a very unequitable advantage. For at the same time, that it obliges a person 55 years of age, to give more than the value of his expectation, it takes, above two-fifths less than the value from a person who is 45 years of age.

If any persons remain still doubtful about what I have said, I must beg their attention to one further argument.

It must be expected that every other member of these societies, supposing them to consist of persons all of the same ages with their wives, will leave widows to whom; one with another (as already shewn), at least $£ 28$
has since followed; and I am afraid I shall not be credited, when I say, that the calculation to prove its capacity of supporting itself, is founded on the supposition, that a hundred married men, whose common age is 3^{6}, will leave but one widow every year, though at the same time it is supposed that two of them will die every year.

This mistake has made the whole calculation one half wrong.-Nothing can be plainer than that, if the death of a married man does not leave a widow at the end of the year, the reason must be, that both himself and his wife have happened to die in the yeas. But it is always very improbable this should happen.
per ann. must be allowed, for as many years as there have been payments from each member. For every 10 guineas then received they must some time or other hereafter pay £28. But let it be well considered what can enable them to do this. Did money bear no interest, for any given sum now received, they could not afford at any-time hereafter to pay more than an equal sum. That is; (since the duration of survivorsbip is in the present case, by Question II. equal to the duration_of marriage) the proper consideration for any given reversionary annuity, to be allowed to all the survivors of a set of marriages, would be, an equal annuity payable by each marriage during its existence; and just balf the reversionary annuity, if it is to be allowed only to half the survivors, or to widows exclusive of widowers. The annual payment then of five guineas, during marriage, can entitle widows to no more than an annuity of ten guineas, supposing money to bear no interest. But if money does bear interest, the same payment will entitle them to more, in proportion to the degree in which it is capable of being improved, during the time between that in which the annual payments begin, and the commencement of widowhood. Now, it is easy to see, that unless money bears very high interest, this improvement cannot be likely in any circumstances to produce a capital, the interest of which shall be equal to the annual
payment itself. Any given annual payment perfectly improved at 4 per cent. compound interest, requires 17 years and a half to double itself, supposing the first payment made immediately ${ }^{4}$. But no marriages are likely to last so long, except those among persons who are very young. A marriage between two persons, both 40, will not probably last longer than 13 years, according to the probabilities of life in Dr. Halley's Table. A marriage between two persons, both 50, will not probably by the same Table, last longer than eleven years; nor a marriage between two persons, both 30 , longer than 16 years. Such marriages, it is true, may possibly last 30 or 40 years. But this circumstance is more than balanced by the fact, that no less possibly they may not last one year. The annual payments, then, being. incapable of such an improvement as shall produce an additional income equal to themselves; it is obvious, that no society ought to go so far as to allow to widows annuities twice as great as those which might be allowed, supposing no interest of money ${ }^{x}$; so

- At 3 per cent. the period of doubling money by compound interest, is nearly 23 years and a half. At 5 per cent. 14 years.
\times The money accumulated will not be exactly the same with that to which the annual payment would increase, if improved at compound interest for a number of years, equal to that which the joint lives have an equal chance of existing. Much less wild the increase be the
far, for instance, as to allow, instead of 10 guineas, 20 guineas for an annual payment of five guineas. In the circumstances of most of these societies three-fifths addition may be the full allowance. That is; supposing the annual payment of each member to be five guineas, time may be expected for gaining from hence a capital of 75 guineas, or that shall produce three guineas per annum interest; and the proper reversionary annuity will be 16 guineas; or six guineas more than the proper reversionary annuity, did money admit of no improvement $\%$.

The

same with that which would arise from the annual payment forborn, and improved, for a number of years equal to the expectations of the joint lives. It will be less, than either of these, for a reason explained in note (K) at the end of this volume.
${ }^{y}$ To these accounts may be added the following short and easy method of trying the sufficiency of all schemes of this kind.

In an adequate scheme it can make no difference whether the annuities themselves are paid, or the value of them in a single payment at the time they become due.Suppose then a society just established, consisting of 600 members, all married men at the age of 40 , each of whom, besides one payment in hand, is to make an annual pay: ment of five guineas. Suppose the age of their wives $39 \frac{1}{2}$, and every widow to be entitled, on the day her husband dies, to a life annuity of $£_{20} 0$, the first payment to be made at the end of half a year.-Suppose further, that the society is to be kept up for ever to 600 members by admitting new ones at the age of 40 , as old ones drop off.-In the first year (according to Tables V, VIII, and XVII. in the next volume) twelve members, at least, will

The preceding observations have gone on the supposition, that the reversionary annuities are to be for life. What difference in favour of these societies arises from the circumstance, that the annuities are to be paid only for weidowbood, cannot be exactly determined. Some judgment, however, may be formed of it from what has been said at the conclusion of Quest. II. Were even one half of the widows to marry, still the schemes I have been considering would probably be in. sufficient. But, in the circumstances of these societies,
will die, and leave twelve widows, each intitled to $£ 80$ per annum. The value of such an annuity to commence at the end of half a ycar, the age being 4a, is $14^{\frac{1}{2}}$ years purchase by Mr. De Moiure's valuation of lives, (or Table VI. Vol. II,) rectioning interest at 3 per cint. The value, therefore, of 12 such annuities; that is, the whole amount of the sums becoming payable during the course of the first ycar, is $£_{3480}$. - The annual contribution is 600 times 5 guineas, or $\mathscr{E}^{15} 50$, and this, tngether with its interest for about half a year, or $£^{2005}$ is all that such a society could be possessed of to bear an annual expence of ${ }^{2} 3480$. It appears, therefore, that, in order to support the expence of the supposed annuities, the annual contribution of each member ought to have been more than five guineas,

A proof of the same nature with that here given may be deduced, by considering these societies as bodies of men united for the parpose of assuring to one another, from year to year, annuities for their widows; and the way of Ginding the value of such an assurance is, to mul. tiply the value of the annuity, by the probability that it will become payable in the course of the year. For instance, Let the member's age, and also his wife's, be 40 . Let the annuity be \mathbb{E}_{20} per ann. for life to commence at the end of a year, or an annuity whose present value is
(reckoning
societies, it cannot be expected, that above one in 10 , or perhaps one in 20 , will marry. The persons most likely to enter into them, are such as have not the prospect or ability of making competent provisions for their widows in other ways. The widows left, therefore, will in general be unprovided for, and, being also left with families of children, it is quite unreasonable to expect, that any considerable proportion should marry. This is true of such as may happen to be left young; but when a society has subșisted some time, the greater part will not be young when left, and these, at the same time that no advantage can be expected from their marrying
(reckoning interest at $3^{\frac{1}{2}}$ per cent.) 14 years purchase; that is, $\sum_{280 \text {. The probability that a person at the age }}$ of 40 will die in a year; and that his wife of the same age wilt live a year: or, in other words, the probability, that such a member will leave a widow in the course of the year, is, by the Breslanu Observations, (or Table $V_{\text {, next }}$ volume) $\frac{9}{4} \frac{9}{5}$ multiplied by $\frac{43}{4 \frac{6}{5}}$, or .0198. (See page 18, and 24). That is; there will be the odds of nearly 49 to 1, against such a member leaving a widow in the course of the year, The value of the assurance, therefore, is .0198, muttiplied by 280, or the 50 th part of $£_{2} 80$: that is, $\mathfrak{E}_{5 \cdots 115}$. In the same manner the value of a like assurance for a year at any other ages may be easily calculated. At the age of 35 , it is $\mathfrak{E}_{5} \ldots 7 \mathrm{~s}$. At the age of 45 , it is $£ 6 \ldots 7$ s. The value, therefore, increases continually with age; and, if given in an annual payment constantly the same, which is the case in these societies, it ought to be greater than the annual payment due for one year at the commencement of the assurance.

Five guineas per annuin, therefore, is, demonstrably, an insufficient payment from a married man for a lifeannuity of $£_{20}$ to his widow.
will be in general the bigbest annuitants, and, therefore, the beaviest burdens.-Moreover, the prospect of the loss of their annuities will have a particular tendency to check marriage among them.-For all these reasons it seems to me likely, that the benefit, which these societies will, derive from marriages among their annuitants, will not be very considerable ; or, at least not so considerable as to be equal to the advantages I have allowed them, by calculating on the suppositions, that the money they receive will be alzoays improved perfectly, weillout loss or delay, at the rate of 4 per cent. compound interest; that the probabilities of life among males and females are the same, and all husbands likewise of the same ages with their wives, and that consequently the maximum of widows on such societies can amount to no more than half the number of marriages ${ }^{2}$.-With respect to the last of these suppositions, it deserves tobe particularly observed, that from accounts taken annually with great care in Scotland, it appears, that the widows of the ministers and

[^32]professors there ${ }^{2}$ notwithstanding the diminution occasioned by their marrying, do exceed considerably half the number of marriages. And certainly it would be unreasonable in these societies not to reckon that the same will happen among them.-Indeed it seems certain, that notwithstanding the hazards that attend child-bearing, the probability that the woman shall survive in marriage, and not the man, is much greater ${ }^{b}$ than is commonly imagined. It will be shewn in the second Essay, that it is not less than the odds of 3 to 2 ; and had I calculated agree-

[^33]ably to this fact, the values of annuities for widows, would have been given near a quarter greater than they have been given on the supposition, that the chance of survivorship is equal between men and their wives.-It must be added, that I have made no account of any expences attending the execution and management of the schemes of these societies. Some such expences there must be, and some advantages should be always provided in order to compensate them.

There are in this kingdom many institutions for the benefit of widows, besides the two on which I have now remarked; and in general, as far as I have had any information concerning them, they are founded on plans equally inadequate, having been formed just as fancy has dictated, without any knowledge of the principles on which the values of reversionary annuities ought to be calculated. The motives which influence the contrivers of these institutions, may be laudable; but they ought, I think, to have informed themselves better. This appears sufficiently from what has been said; but I will just mention one further proof of it.

The London Annuity Society promises that, if in 21 years; and the Laudable Society that, if in 25 years, it shall appear that there has been all along an annual surplus in favour of the societies, it shall be employed in either raising the annuities, or in sinking the annual
payments.
payments. Now, they may be assured, that if at the end of these periods, they should not be possessed of a considerable surplus, the true reason will be, their having granted much higher annuities than the annual contributions are able permanently to support. For it has been demonstrated, that the number of annuitants, and consequently the amount of the annual expences, will go on increasing for a long course of years beyond these periods. The effect, therefore, of carrying into execution this regulation will be, precipitating that bankruptcy which would have come to soon had there been no such regulation.

It has been said in defence of these societies, that the deficiencies in their plans cannot be of much consequence, because their rules oblige them to preserve a constant equality between their income and expences, by reducing the annuities as there shall beoccasion, And from hence it is inferred, that they can never be in any danger of a bankruptcy. But it has appeared, that the time when they will begin to feel deficiencies is so, distant, that it will be too late to remedy past errors, without sinking the annuities so much, as to render them inconsiderable and trifling. All that is given too much to present annuitants is so much taken away from future annuitants. And if a scheme is very deficient, the first annuitants may, for 30 or 40 years, receive so much more than they ought to receive, as to leave little or nothing for any
who come after them. Deficient schemes, therefore, are attended with particular injustice; and this injustice will be the same, if, instead of reducing the annuities, the annual payments should be increased; for all the difference this can make will be, to cause the injustice to fall on future contributors, instead of future annuitants.

But what requires most to be considered here is, that, after either the annuities have been for some time in a state of reduction, or the contributions in a state of increase, it will be seen that these societies have gone upon wrong plans, and, therefore, they will be deserted and avoided; the consequence of which will prove still greater deficiencies in their annual income, and a more rapid desertion and decline, till a total dissolution and bankruptcy take place.-This will be the death of most of the present societies for providing for widows, if they continue to be encouraged, and do not soon alter their plans: And at that period the number of annuitants will be greater than ever; whose annuities, having no other support than the poor remains of a stock always insufficient, will be soon left, without the possibility of relief, to lament that ignorance and credulity which gave rise to these societies, and which had so long supported them.

In the London Annuity Society, there is an encouragement to bachelors and widowers to join them, arising from the additional annuities
nuities to which they will be immediately entitled; when they marry, in consequence of having made their payments a greater number of yeass: and it is imagined, that particular advantages will be derived from such members. But even these will in general pay much less than the value of their expectations.-A person who begins an annual contribution of five guineas at the age of 24 , will, should he live 11 years, and marry a woman of the same age at the end of that time, entitle her immediately to $£_{35}$ per ann. during survivorship, and to $£_{41}$ per annum should he live four years after marrying, (interest being at 4 per cent.) ${ }^{\text {- }}$ In this particular case, therefore, a person will pay nearly the true value of his expectation. But all at all ages who marry, in less time than 11 years after admission, will pay less than the value of their expectations.

[^34]Supplement to the preceding Section; containing a furtber Account of the Societies for the Benefit of Widows.

Of the London Annuity Society.

1N the preceding Section, the reader has seen on what very incompetent plans the two Societies, which are the subject of it, have been formed. Some changes have taken place in them since the last edition of this Treatise, of which it is necessary I should here take notice.

The London Annuity Society, consisting in January 1781 of 326 members, has so far reformed its plan, as to be now in little danger. Besides ordering a compensation for difference of age between husbands and wives, it determined, in 1774, not to engage to pay a higher annuity than $\not 20$ to widows if their husbands had lived a year after admision, for a contribution of 10 guineas in hand, and five guineas per ann. afterwards. At the same time, however, room was left for expecting that some additional annuities might be paid to the widows of such members as should survive 15 years in the Society; but what the additions should be, was left to be determined at the end of 15 years from the establishment of the Society. Accordingly,
cordingly, last year some able judges were consulted; and, if I am rightly informed, the result has been, that the Society has agreed to promise for the same contributions an addition to the $\mathscr{E} 20$ annuity just mentioned, of \mathscr{E}_{4} per ann. to widows, if their husbands have been members 15 years or more.

He that will consider the demonstrations in the foregoing Section, or compute agreeably to any table of the decrements of life by the Rule in Question X. may assure himself that a contribution of ten guineas in immediate payment and five guineas every year after the first, is scarcely a sufficient support for an annuity of $\neq 20$ during life to widows, supposing husbands and wives of the same ages, and money improved at an interest of 4 per cent.-But money may now be improved at a higher interest. Some advantages also must be derived from making the annuities payable for widowbood only; and on these accounts, such a contribution may safely enough be reckoned a proper payment for an annuity of $£ 20$ as it is offered by this Society. But it cannot, without danger, offer more; particularly, as it is certain, that the lives of women in general, and more especially of women in the advanced stages of life, are more durable than the lives of males.

The additional annuity; however, not being of more value than about three guineas and
and a half in a single payment at entrance, the Society may possibly find itself capable of paying it, provided the contributions for supporting the scheme (namely ten guineas at entrance and five guineas per ann. from every member, besides a just compensation for the excess of his age above that of his wife) are not loaded with any of the expences of management ${ }^{\text {d }}$.

sect.

Abstract

- In the year 1790 this Society referred the examination of their affairs to Dr. Price and myself, at which time their number consisted of 328 members, and 85 widows claiming annuities to the amount of $£_{1967 \text {-1heir stock }}$ invested in the 3 per cents. amounted to $\mathscr{E}_{70} 0,500$; the dividends on which together with the annual premiums, exceeded their expenditure by \mathscr{E}_{2000} a year.-In consequence of our joint opinion and advice, it was then determined to increase the annuities to widows $\nsupseteq 1$ for every year that the husband should live beyond 24 years, so that if they lived to make 50 payments the annuities should amount to \mathscr{E}_{50}.-Since that period another investigation took place in 1798, when it appeared that the Society consisted of 302 members and 132 annuitants claiming \mathcal{E}_{3294} per annum-that their stock in the three per cents. amounted to $£_{93}, 000$, that their annual income exceeded their expenditure by more than $£ 1000$, and, on the supposition that this capital was worth 75 per cent, or the money nearly which had been' paid tor it , that they possessed a surplus of $£_{14,735 \text {. }}$

Whatever objection may be made to this method of estimating their capital, it is evident, if the money had been invested where it could suffer no diminution, that the affairs of the Society would have appeared to be in a very flourishing condition. The public funds, however, since the year 1798, have so improved in value, that if the stock were now sold it would produce nearly the sum which was originally paid for it, and therefore no reasonable doubt can be entertained at present of the Society's

> Further Account of the Laudable Society for the Benefit of Widerws.

THIS Society affords a melancholy proof of the pernicious tendency of that disposition to form annuity societies which prevailed some time ago.-In consequence of a petition to Parliament in 1774, from many of the most respectable members, it reformed its plan; but no arguments could engage the majority of the members to consent to a reformation which was likely to be attended with any other effect than an increase of calamity by postponing it. For thirteen years from the time of its establishment, it had overlooked the differences of age between men and their wives, and gone upon the plan mentioned in page $72 .-\ln$ 1774, a
ciety's stability. Indeed it is not possible that they should ever fall into any serious error, provided that at certain and not , very distant intervals, they continue those investigations which have been twice repeated within the last twelve years.

It may not be improper to add, that on the 1 st of January, 1802 , the members of this Society amounted to 300 , the annuitants to 134 -the capital to $\mathscr{E}_{102,000}$ stock in the 3 per cents, the annual income, including dividends and premiums, to $£_{4} 804$, and the annual expenditure, including annuities and management, to \mathfrak{E}_{3374}, or \mathscr{E}_{1430} less than the income.
vol. 1 .
H
compen-
compensation for the wife's inferiority of age was ordered to be paid by all new members, and at the same time the following plan agreed to.-For an annual payment of five guineas, the first to be made immediately, every widow was entitled to an annuity during widowhood of \mathscr{E}_{10} if her husband had? been admitted $\} 2$ years and a day

$£_{15}$ if		-	3 years
$£_{20}$ if	-	-	6
$\not \underbrace{25}$ if	-	-	8
$\not \underbrace{30}$ if	-	-	11
\mathscr{E}^{65} if	-	-	13
$\oiint^{\ldots} 40$ if	-		

Any one who will calculate by the rule in Quest. VIII. will find that the annual payment necessary to support these annuities is nearly, by Dr. Halley's Table of Observations, $\notin 7$ supposing equality of age between husbands and wives, money improved at 4 per cent. and the mean age of admission thirty-seven._-This change, therefore, did not deserve the name of a reformation; and an attention to the following account will shew, that instead of doing good, it has in fact only prolonged the existence of the Society to do mischief.

From the establishment of the Society in 1761 to 1772 , it had increased to 700 members; but in April 1780, it had gradually sunk,
sunk, by deaths and desertions, to 550.-The whole number of widows which had come on the Society was then 168 , of whom 84 had come upon it in six years, from 1774 to $1779^{\text {c }}$; that is, fourteen annually. Thirteen had died and fourteen had married, which had left 141 annuitants, the claims of 133 of whom amounted then to $\not £_{3,310}$ per ann. The claims of the remaining eight, reckoned at $£ 30$ per ann. each, will make $\mathscr{E} 240$ per ann.; and the expences of management (or $£ 300$ per ann. nearly), added to these sums, will make the whole annual expence of the Society in April 1780, £3,850. _-Its income, consisting of the interest of $\npreceq 49,090$ three per cent. stock, and the subscriptions of 550 members at five guineas each, amounted at the same time to $£ 4,36$ o, leaving a favourable balance of only $\not £_{480}$. Supposing the Society to preserve its present number of members, and the number of annuitants to increase for six years to come only at the rate of ten annually, its expence at the end of the present year, or the beginning of the next, will be equal to its income; and afterwards it will find itself under the necessity of having recourse to one of the three following expedients. It will be obliged either to run into its capital, or to increase its contributions, or re-

[^35]
100 Further Account of the Laudable

 duce the annuities. - The consequence of the first of these expedients will be, that the capital of the Society will be soon consumed, and the anduitants left without support.The consequence of the second will be, that the contributions will be increasing every year till, in 10 or 12 years, they are doubled, and at last almost tripled.-The consequence of the last will be, that the annuities will. sink every year till they come to be less than half the annuities promised ${ }^{\text {f. Such }}$ are the affairs of this infatuated Society, nor is it easy to apply any remedy to them ; for in consequence of going on too long with an insufficient scheme, the Society has large payments to make in order to compensate past deficiencies; and a scheme at first adequate would now prove inadequate.-For example. (Supposing a just allowance required for the wife's inferiority of age) an annual payment of seven guineas from every member, begun in 1772, when the number of widows was only 42, would probably have been sufficient to support the reformed scheme mentioned in page 98 ; but nore an annual payment of nine guineas from the present members, and[^36]
Society for the Benefit of Widows. 101

of seven from all future members, would scarcely be sufficient.

In such circumstances it seems best to break up, and to divide the present capital, as far as it will go among the annuitants. Should this be done, the annuitants will indeed be great sufferers; for, so miserably circumstanced is the Society, that its whole stock will not pay much more than balf ${ }^{\text {t }}$ the value of the annuities. But this only sets in a stronger light the necessity of an immediate dissolution: I say immediate; for the annuitants are increasing fast, together with the medium of the annuities due to them; and therefore the consequence of delay must be, extending greater sufferings to greater numbers.

POSTSCRIPT.

SINCE the preceding account was written, this Society, convinced at last of its

[^37]mistakes, has resolved to reduce the annuities of such widows as became claimants before the alteration in $1 / 74,35 \mathrm{per}$ cent. and the annuities of all the other widows who are now claimants, 20 per cent. It was also resolved by two general courts, that the annual payments should be increased from five to six guineas. But this resolution was revoked by the general court in July last; and a resolution substituted in its room to change the plan described in p. 98 , into one which makes it necessary that a member should have been admitted 3^{\prime} years to entitle his widow to an annuity of $£ 10$, and 7 years to entitle her to $£ 20$; and 13 and 20 years to entitle her to $\mathscr{E} 30$ and $\mathscr{E} 40$.— Possibly this resolution, like the former, will be retracted by some future general court. Should it be confirmed, it will, in conjunction with the reduction just mentioned of the annuities payable to present claimants, constitute a reformation which (supposing the funds of the Society not incumbered with any expences of management) might have been nearly sufficient ten or twelve years ago to save the Society. But it is far from being sufficient nowe-The reduction of the annuities payable to present claimants is too little. It should have been extended to the widows of the old members now living, and the new plan restricted to members lately admitted, and to future members ; and a compensation
compensation for past over-payments to widows should have been provided ${ }^{\boldsymbol{k}}$.

SECT.

- This unfortunate Society, since the period in which the above postscript was written, has repeated its attempts to reform those errors in which it originated. In the year 1790 the number of its members had sunk to 330 , while the number of its annuitants had increased to 217° Its annual income also had fallen short of the expenditure by $£_{1740}$, and its capital, after an accurate examination of its finances, appeared to be insufficient to satisfy the demands úpon it by $£_{30,000}$ nearly. Under these circumstances it was determined that the annuities payable to the widows who were then claimants should be reduced one half, and that the annuities to all future claimants should be reduced one fifth. At that time the Society possessed $\mathscr{E}_{42,000}$ stock in the four per cents; and had these continued at par, or at the same price as they were then estimated, it is probable that the Society would have been spared the mortification of any further reductions. But in consequence of the disastrous war which soon ensued, this stock, together with all other property in the public funds, lost more than one third of its value-the capital of the Society was diminished in the same proportion, and the annuities, which were yearly increasing upon it, required so much larger quantity of stock to be sold in order to discharge them, than the computations supposed in 1790, that new alarms were produced, and it became necessary once more to have recourse to retrenchment. In the last year therefore another investigation of the Society's finances was undertaken, on the supposition that its stock was then worth only 80 per cent. or one fifth less than it was really. worth at the period of the former investigation, and the result was such as might have been expected. The value of the present and future claims was found to exceed thevalue of the capital by \mathscr{E}^{2257}, so that no alternative remained but either to break up the Society, or to reduce the annuities. The former was deemed impracticable, and consequently it was determined that the annuities of the present widows, as well as those which should hereafter become claims upon the Society, should be reduced

S E C T. II.

Of the Association among the London Clergy, and the Ministers in Scotland, for providing Annuities for their Widows ${ }^{\text {i }}$.
IN April, 1765, the clergy within the bills of mortality and the county of Middlesex, at a general meeting in Sion-Collcge, agreed to form themselves into a society for the support of their widows and orphans. Many in this respectable body may be capable of doing, in a better manner, what I have attempted in this Treatise; and they are, perhaps, already sensible of the deficiencies in the plan which they have established. I shall not, however, I hope, do wrong, in taking the liberty to recite briefly this plan, in order to introduce a few observations upon it.
duced one sixth; so that instead of \mathscr{E}_{24}, only \mathscr{E}_{20} insiead of $\mathfrak{E} 16$, only $\mathfrak{E}_{13} \ldots 6$...8d. per annum, \&c. are to be paid in future. The depreciation of the public funds is an event for which no computation can provide, and therefore, as the Society's affairs in their present state depend as much on the stability of those funds as on the lives of its members, it is impossible to say how far this last reduction may prove effectual. The number of its widows now amounts to 216 , but the number of its members scarcely amounts to half their number in 1790. If circumstances therefore should still continue unfavourable, the next measure must be, the dissolution of the Society, and a division of the remaining capital among the annuitants and surviving members in proportion to their respective interests in the funds of the Society. M.
${ }^{1}$ This section, as well as the former, must be considered as written in 1771 . Subsequent accounts of the different institutions are continued respectively at the end of these tiwo Sections.

According to the printed articles, every clergyman possessed of any benefice, lectureship, or licensed curacy, within the bills of mortality and the county of Middlesex, who subscribes annually one guinea, or two guineas, or more, shall entitle his widow to an annuity; or, if he leaves no widow, he shall entitle any such children as he shall leave, to the same annuity for seven years as his widow would have had. And, in case a widow possessed of an annuity, should either die or marry before the lapse of 10 years, from the commencement of her annuity, such children of her former husband as shall be then alive, are to be entitled to as many of the ten years payments of the annuities as she shall not have received.-The annuity is fixed to no particular sum, but instead of this, it is ordered, that a fourth part of the annual subscriptions and interest shall be divided the first three years after the establishment of the society; half only the next four years; and three fourths the next five years; provided, however, that in no one of these 12 years the dividend shall exceed $£ 20$ to the widows and orphans of the clergy subscribing two guineas or more; and $£ 10$ to the widows and orphans of the subscribers of one guinea. And, after the expiration of 12 years, the whole amount of the subscriptions, and of the interest of the capital stock, is to be divided proportionably for ever.-It is further provided, that every cler-
gyman who shall be married, or have children, at the time of his subscription, shall pay a fine of two guineas towards a capital stock, if a subscriber of two guineas or more, and 40 years of age or upwards. If 50 years of age or upwards, he shall pay a fine of three guineas; if 60 or upwards, five guineas. But, if not married at the time of his subscribing, and shall afterward's marry, he shall pay a fine according to the age he shall be of at the time of his marrying. The obligation laid upon all, whether married or unmarried, to become subscribers, is, an incapacity of being admitted members without the consent of a general court, unless, within two years after becoming possessed of any ecclesiastical employment, they subscribe.

Every one who has attended to the observations in this and the preceding chapter, must know what judgment to form of these regulations.

Let us suppose that all the clergy in Lon: don and Middlesex came into this association from the first; and that one with another they are subscribers of two guineas annually; and that there are among them as many unmarried persons as married.

In this case, it may be learnt from Quest. XIII, that the annuity to which widows should be entitled, (supposing no allowance to the children of any that die) ought not to exceed 10 or 11 guineas at most; and that, besides
besides the annual subscriptions, there ought to have been a fine paid at the commencement of the scheme, by every married person, of six guineas at least, or, by the whole number of subscribers, three guineas. If the number of married members is double the unmarried, the annuity ought not to exceed eight guineas; and the fine from every member should be about four guineas.-The order, that only a fourth part of the annual subscriptions and interest shall be divided the first three years, half the next four years, and three quarters the next five, is without reason; because the number of claimants, for the first 12 years of the scheme, will be so few, that it will not be possible, during that time, that there should be occasion for dividing any proportions so large of the annual subscriptions and interest, unless they are indeed beyond all bounds too little.After 12 years, the number of annuitants will go on increasing for near 50 years, as appears from Quest. III. The consequence, therefore, of dividing, after that time, the whole amount of the annual subscriptions and interest, will be a constant yearly diminution in the dividends for near 50 years; and making the payments to the first claimants much more considerable than they ought to be, at the expence of all subsequent claim-ants-For these reasons, it appears to me out of all doubt, that this scheme is by no means likely to answer the good ends proposed by
it ; and that, therefore, it will be best to lay it aside. At the time it was settled it was, I fitd, further agreed, that the annual subscriptions of the laity, together with the interest of their benefactions, unless otherwise directed by the donors; and the annual subscriptions of such of the clergy as shall so direct, shall make a cbaritable fund to be applied to the relief of the distressed widows or children of all the clergy within the limits I have mentioned, whether subscribers or not, provided that in no one year of the first twelve more than $£ 20$ be given out of the fund to any one family.-This is an excellent design; and if the money arising from all the subscriptions is thrown into this fund, an important means of relief may be provided for such of the more indigent widows and families as will accept the help of charity.

There is one more scheme of particular consequence, which I must take notice of : I mean, that which is established by Act of Parliament, among the ministers and professors in Scotland, for making provision for their widows and orphans. The last mentioned scheme, and also several others of the same kind ${ }^{k}$ in this kingdom, have been formed

[^38]formed on the model of this: and the success with which it has been hitherto attended, is one of the principal causes to which they have owed their rise. It is, therefore, proper I should give some account of it ; and it will be sufficient with this view to mention, " that for an annual payment, which " begun immediately, of five guineas from " 1011 contributors, 667 of whom are mar" ried persons, besides a tax on weddings, " producing about $£_{142}$ per annum, it en" titles every widow to an annuity of $\notin 20$ "d during widowhood, and also every family " of children that shall be left by such " members as die without leaving widows, " to $£_{200 \text {." This scheme contains a va- }}$ riety of other particulars; but this is its sub-stance-It commenced on the 25th of March, 1744; and from that time to the 22 d of November, 1770^{1}, or in 26 years and near a months, 151 ministers and professors died, and left 151 families of children without widows; that is, 5.66 such families were left annually; and the annual disbursements
 tract this sum from $£_{5450}$, the whole an-

Westmorland, and Durham.-Even the London Annuity Society, though its plan is totally different, professes to form itself on the principles of the Scotch establishment, and to derive encouragement from it.
${ }^{1}$ In Nov. 1779, or 35 years and 8 months, 199 ministers and professors had died, and left 199 families of children without widows; that is 5.58 annually.
nual income; and the remainder, or $£ 4318$ per annum will be the standing provision for bearing the expence of all the annuitants possible to be derived from 667 marriages. Such an annual payment, or 4.27 each from 1011 contributors, is the same with 6.55 each, from 667 contributors; and, consequently, it appears, that in this establish-- ment a contribution is received equivalent to an annual payment beginning immediately, of $£ 6.55$ from every married man, in order to entitle his widow to an annuity of $£ 20$ during her widowhood.

In the societies mentioned in the last section, annuities increasing from $£_{20}$ to $£_{40}$ are promised to widows for an annual payment of only 5 guineas ${ }^{m}$. And, in all the societies for the benefit of widows with which I am acquainted, there is an equal or a greater disproportion between the contributions received, and the annuities pro-mised.-With what strange rashness then has the plan of this establishment been copied ? And how absurdly have the societies in this kingdom pleaded it as a precedent which encourages and favours them ?-It would be trifling to say more on this subject.

It may be observed that the annual income for the support of this establishment, supposing it to have only the benefit of widows

[^39]
the Ministers in Scotland, \&c. 111

in view, ought to be $£_{7.19 \text { per ann. from }}$ every marriage, according to Question XIII. p. 46, and $£^{2} .44$ per ann. according to the calculation in Note F, at the end of this volume.

These determinations exceed the income actually provided. But the excesses are by no means considerable enough, to afford any certain reason for concluding, that the fund of this establishment will prove insufficient. I was, however, once led to entertain some doubts on this subject. And in these doubts I thought myself confirmed by observing, that, in the calculations ${ }^{2}$ made at the commencement of the scheme, the number 333 was stated, as the maximum of widows living at one time, likely to come upon it, or to be derived from 20° widows left annually; and also, that 40 years was stated as the number of years necessary to bring on this maximum; whereas I was satisfied, that the maximum of widows would not prove much less than 400 ; nor the number of years necessary to bring it on, less than 60 . In the former

- See Table III. in a book printed at Elinburgh in 1748, entitled, Calculations, with the Principles and Data on which they are instituted, relative to a late Act of Parliament, entitled, An Act for raising and establishing a Fund, for a provision for the widows and children of the ministers of the church, and of the heads, principals, and masters of the universities of Scotland; shewing the rise and progress of the Fund.
- See note A, at the end of this volume. See likewise the note in p. 89.
editions of this work, I gave a distinct acs count of this. But I have lately received such information P as hath convinced me that my doubts have been in a great measure groundless. I have learnt, in particular, that there have been several calculations subsequent to those I had seen; and that this establishment has enjoyed advantages and provisions for its support which I was unacquainted with, and which give reason for expecting that it will indeed be able to bear the expence of 400 annuitants, should so many come upon it. I should only tire most of my readers, were I to enter into an account of these advantages and provisions. It will be of more importance to take this opportunity to observe, that the probabilities of life from which the determinations I have mentioned are derived, though much lower than the probabilities of life among the ministers and their wives in Scotland 9 , are yet such as give the values of reversions depending on survivorships among them too high.

In order to understand this, it must be considered, that the difference between the probabilities of life in different situations, takes place much more in the first and mid-

[^40]dle than in the last stages of life; and that the effect of this must be to increase the duration of joint lives, and at the same time to lessen the duration of survivorship in those situations which are most favourable to health. Or, in other words, to render the duration of marriage in such situations, greater than it would otherwise be in proportion to the duration of widowhood; and, consequently, to reduce the present value in annual payments, during marriage, of any given annuity payable during widowhood. For instance. Were the probabilities of life among the ministers and their wives in Scotland the same that they are in Mr. De Moivre's hypothesis, or in the Breslaw and Northampton Tables of Observation, the duration of marriages among them, taken one with another, could not be more than 19 years. The duration of widowhood would be 22 years, and the maximum of widows living at one time derived from 667 marriages constantly kept up, would be considerably more than 400. Were the probabilities of life among them the same that they are in London, the duration of marriage would be still less, and the duration of widowhood greater, and the maximum of widows derived from 667 marriages, could not be less than 500. But the fact is, that the duration of marriage among them is 22 years nearly; and that of widowhood about VOL. 1.

20 years and a halfr. And it appears also, from accounts taken annually, that the number of widows living at one time, derived from the whole body of ministers and professors, does not exceed 400. It is, therefore, certain that a smaller income must be sufficient for the support of this scheme than would be necessary, according to the probabilities of life in the Tables just mentioned. -And upon the whole; after a careful review of all the circumstances of this establishment in its present state, I am well satisfied that the success with which it has been hitherto attended, is likely to continue; and that it will indeed prove a permanent foundation of that assistance to the seidow and fatherless which is intended by - it.-Caution, however, and vigilance, will for some time be necessary. Many more years must pass before it can receive a decisive confirmation from experience. Events have hitherto favoured it more than could have been reasonably expected. They may perhaps hereafter try it; and deviations from probability may arise, which cannot be now foreseen.-Buit I ought to ask pardon for making these remarks. The venerable mi-

[^41]nisters ánd professors concerned will, I hope, excuse me. They are eminently distinguished by their abilities and knowledge: and can have little need of any information which I am able to give them.

Further Account of the Association among the London and Middlesex Clergy; and of the Establishment among the Ministers and Professors in Scotland.
THE Clergy of London and Middlesex agreed, in 1775 , to new rules and orders, by which such fines were required (on account of a subscriber's exceeding the age of 40 , and being older than his wife) and such reductions made in the annuities as would probably have rendered the contributions adequate to the expences of the assaciation. But the event has been, that in consequence of this necessary reformation, the Association has dwindled, and is now sunk so low as not to be likely to subsist much longer.

On the contrary. The Establishment among the ministers and professars in Scotland has prospered to a degree which gives reason to believe that it cannot fail to answer the hopes of the venerable body interested in it. This has been owing chiefly to the great ability and faithful zeal of the Rev. Dr. Webster, its founder and conductor.-To the account already given of it in the Second

116 Furtber Account of the Association

Section, I will take this opportunity to add the following particulars.

Dr. Webster (having, when the plan was first formed 38 years ago, no certain data to go upon) assumed 52 as the medium age at which the widows of ministers would commence annuitants. By calculating on this supposition, and taking the chances of life as they are in Dr. Halley's Table, he found that the number of annuitants on the scheme at Lady-day 1780 would be 310. --The fact is, that they were then 304; and that consequently there was, even in this way of calculating, a difference of six in favour of the funds which support the scheme. ——Since the establishment of the scheme it has been discovered, that the medium age just mentioned does not probably exceed 47 . Dr. Webster, therefore, some years ago, in order to put the scheme to a severer trial, -instituted a new calculation, on the supposition that the medium age is no more than 44, and found that on this supposition the number of annuitants at Witsuntide 1780 would be 328 . This has made a still greater difference in favour of the Establishment, and gives a very encouraging prospect of its stability; a sufficient income having been in reality provided for bearing the expences, had the annuitants increased as in this last calculation.
Had 52 been the mean age of the widows when they commence such, the maximum of widows
widows living at one time derived from 20 left annually, would be 334 , according to Dr. Halley's Table; but supposing it no more than 44, this maximum would exceed 400; and the enquiries which have been made, give reason to expect that it will not fall much short of this number. Dr. Webster, therefore, has in his last calculations, reckoned upon the increase of the annuitants to this number; and for this reason, and to secure more certainly the Establishment, a new act of parliament was procured in 1779, by which, among other new provisions, it was ordered, that the increase of the capital (then amounting to $£ 75,088$) should not be discontinued till it rose to $\not £_{100,000 \text {. This }}$ capital, joined to the annual contributions, will probably be an ample support to the Establishment, should the number of annuitants (which will go on to increase for near forty years more) become at last 400 .Circumspection and caution, however, continue to be necessary, because still unfavourable events may arise, which no human wisdow can foresee.

Having bestowed a good deal of attention on this institution, I cannot take leave of it without congratulating Dr. Webster on his happiness. By being the founder of this, scheme, and by the care with which he has watched its progrees, and conducted it to its present state of maturity, he has entitled himself to the blessings of many indigent

1 widows
widows and orphans, and made it impossible that he should be ever remembered in the church of Scotland without gratitude and respect.

It is much to be wished that institutions of the same kind, could be established in England. Some efforts have been made to this purpose. The reverend and ingenious Mr. Gandy of Plymouth, having with much labour and ability' prepared a plan of this kind, endeavoured in 1774 and 1775 to get it established in the diocese of Exeter.' Had he succeeded, the benefits arising from it would have become in a little time very conspicuous, and an example would have been given which would perhaps have been followed in other dioceses. But he did not meet with sufficient encouragement, and the scheme was given up.... Being unwilling that the time and pains which were employed in digesting and calculating the tables for this scheme should be entirely lost; I have inserted some of the principal of them among the Tables in the next volume.-The Rev. Mr. Grant, of Henly upon Tbames, has been also lately engaged in soliciting encouragement to a similar scheme; and I heartily wish him the success his benevolence and abilities deserve ${ }^{\text {. }}$.

[^42]Account of a Scheme established among the East-India Commanders.
THE East-India, Commanders six years ago entered into an association for the purpose of providing for their nominees, and did me the honour to desite I would recommend a scheme to them. They approved the following, and have adopted it.-Every member is entitled to $£ 500$ payable at his death to his nomince, in consideration of $£_{50}$ at his admission, and eleven annual payments of $\mathfrak{E} 25$, the first to be made at the beginning of the second year, and the right to every payment to depend on the continuance of the life of the subscriber. No subscribers must be admitted whose ages are not less than 50 ; and their mean ages are reckoned at 40.

In calculating this scheme, interest was reckoned at $3 \frac{1}{2}$ per cent. ${ }^{\text {t }}$; but a much higher improvement has for some years been made of money, and the scheme has escaped the danger of being too much loaded in its infancy. I am satisfied, therefore, that, without

[^43]out altering the contributions, the sum pay. able to nominees may with perfect safety be increased to $£ 550$. Indeed, I should be in no pain were it even advanced to $£ 600$, provided only the contributions were made in guineas, instead of pounds, and all savings made to accumulate in the short annuity for 27 years from Christmas last._The progress of such an association will be as fol-lows.-Suppose it to consist of 46 members, kept up from year to year by admitting, as old members die off, new ones at the mean age of 40. At first, according to Mr. De Moivire's hypothesis, only one member will die annually; but, after a certain period, two will die annually. During this interval there will be savings which will raise a stock, the interest of which, when added to the annual contributions, will be just sufficient, when two members come to die annually, to pay two claims.-Supposing each claim $\npreceq 550$, the expence of the association, when greatest, will be $£_{1100}$ per ann. The contributions at that period will be first, $£ 50$ each (or $£_{100}$ in all) from two new members admitted every year; and $£_{25}$ each (or $£_{450}$ in all) from $18^{\text {" other mem- }}$ bers who had not been admitted more than eleven years. The remainder (or $\npreceq 550$) necessary to make up $£_{1100}$ per ann. will be

[^44]the interest of the capital, which, therefore, if lodged in the three per cents, must be $£_{18,333 \text {. When, therefore, any such asso- }}$ ciation consisting of 46 members has raised this stock; or, if it consists of any other number of members, when it has raised a stock in the same proportion to it, that the standing number of members bears to 46 , it will beçome a reasonable object of consideration whether the increase of its stock should not be discontinued, and all subsequent savings, should any arise, be employed in either lessening the contributions or increasing the claims *.
x The examination of this Society's affairs was veferred to me in the year 1797, when it appeared that the number of those members who had completed their eleven payments amounted to 29 , and the number of those who having been admitted at late periods had not completed their payments amounted to 47.-At that period, or 21 years after their establishment, 38 deaths had taken place, which exceeded the number that should have happened according to the Northampton '「able in the proportion of 4 to 3 . But the premiums having been computed at $3 \frac{1}{2}$ per cent. while their money had been improved at 5 per cent., the increased number of claims was balanced by the increased accumulation of the capital, and therefore had their stock, which then consisted of $\mathfrak{E} 690$ per annum in the Long Annuities, and an Exchequer Bill for \mathfrak{E}_{1000} been sold for the sum which was originally paid for it, a considerable surplus, after discharging all demands, would have been left in favour of the Society: But the subsequent depression of the funds so far lessened the value of the Society's capital as, not only to destroy that surplus, but even to produce a deficiency to a larger amount. Happily, however, the funds have since that period so far recovered as in a great measure to restore the affairs of the Society, and to render them secure. There cannot be a doubt but that the original plan was founded

S E C T. III.

Of the best Schemes for providing Annuities for Widozes.
INSTITUTIONS for providing widows with annuities would, without doubt, be extremely useful, could 'such be contrived as would be durable, and at the same time easy and encouraging. The natures of things do not admit of this in the degree that is commonly imagined. The calculations and rules, in the preceding chapter, will enable any one to determine in all cases to what reversionary annuities any given payments entitle, according to any given valuation of lives, or rate of interest. From Quest. VII. and VIII. in particular, it may be inferred that (interest being at 4 per cent. and the probabilities of life as in the Breslaw, Norwich, and Northampton Tables) for an annual payment beginning immediately of four guineas during marriage; and also for a guinea and a half in hand, on account of each year that the age of the husband exceeds the age of the wife; every married man, under 40 , might be entitled to an annuity for his widow, during life, of $£ 5$ if he lives a year; \mathscr{E}_{10} if he lives three years; and $\not \mathscr{E}_{20}$ if he lives seven years.
founded on just principles. But while their capital is rendered so fluctuating by being invested in the funds, the real state of their affairs will always depend as nuch on the rise or fall of public credit as on the probabilities of life among their members.

Providing Annuities for Widozes. 123
If such a society chuses, that those who shall happen to continue members the longest time, shall be entitled to still greater annuities, six guineas, additional to all the other payments at admission, would be the full payment for an annuity of $\mathscr{E} 25$, and 12 guineas for an annuity of $£ 30$ if a member should live 15 years.

All bachelors and widowers might be encouraged to join such a society, by admitting them on the following terms.-Four guineas to be paid on admission, and tbree guineas every year afterwards, during celibacy ; and on marriage, the same payments with those made by persons admitted after marriage ; in consideration of which, $£_{1}$ фer annum, for every single payment before marriage, might be added to the annuities to which such members would have been otherwise entitled.

For example. If they have been members four years, or made five payments before marriage, instead of being entitled to life-annuities for their widows of only $£_{5}, £_{10}$, $\mathscr{£} 20, \not £_{25}$, and $\npreceq 30$, on the conditions I have specified, they might, be entitled to an-
 Or, if they have been members nine years, and made 10 payments, they might, instead of the same annuities, be entitled to annuities of $£ 15, £ 20, £ 30, £ 35$, and $£ 40$.In this case, the contributions of such members as should happen to desert, or die in celibacy, would be so much profit to the society,
ciety, tending to give it more strength and security.

This is one of the best schemes that I can think of, or would chuse to recommend. But in the following scheme there is a simplicity and fairness which seem to give it a particular preference.

Every husband, be his age what it will, for a single payment at admission, of $£_{15}$, with $\not £_{1 \ldots 10 \text { s. added. for every year that his }}$ age exceeds his wife's, and an annual payment of $£ 5$ during marriage, (the first to be made at the end of a year) might entitle his wife, should he leave her a widow, to an annuity of $\npreceq 10$ for her life, if he lives one year ; $£_{11}$ if he lives two years ; $£_{12}$ if he lives three years; and so on ; the annuity to increase continually at the rate of $£_{1}$ for every year that the husband lives beyond one year.-Any addition to these payments might entitle to a proportionable addition to the annuity, and to its increase. _And should any husband under 40 wish to secure a sum for his children, provided he should leave no widow, he might for every annual payment of nine shillings, during life, entitle them to $£ 50$, payable among them at his death, whenever that shall happen. Making all these payments guineas instead of pounds, might probably be sufficient, if the number of subscribers is considerable, to defray the expences of management.

There

There is one particular advantage which societies formed on plans of this kind would enjoy ${ }^{7}$.-Persons who know themselves subject to disorders which are likely to render them short-lived, will have no great temptations to endeavour to gain admission into such societies; and, if admitted, the danger from them will be less than on any other plan. Were it not for this danger, the following plan might be recommended.

In the plans hitherto mentioned it is implied, that, if either a member or his wife dies within any of the periods specified, the additional annuities, that would otherwise have become due, will be lost. But it would be much more agreeable to a purchaser, that they should be made certain to his wife, provided she lives to the end of these periods, though in the mean time his own life should fail. The value of such annuities may be computed by the rule in Question IX.

Suppose, for instance, the scheme to be " that a wife shall be entitled certainly to a " life-annuity of $\npreceq 20$ the first payment of " which shall be made at the end of 12 years, " provided she should be then alive, and her " husband dead; or at the end of any year " beyond this term in which she may hap" pen to be left a widow." Suppose it also stipulated, " that she shall be entitled to

[^45]" $\mathscr{E} 10$ more, or $\mathscr{E} 30$ in all, on the same " terms, provided she should live 16 years." -The value of such an expectation (interest being at 3 per cent. and the probabilities of life as in the Nortdampton Table of Observations) will be, in the most convenient round sums, supposing none admitted above 50 years of age, seven guineas in annual payments to be continued during marriage, and to begin immediately; besides four guineas in present money for every year, as far as 15 years, that the husband's age exceeds the wife's, if he is between 40 and 50 , and three guineas on the same account if he is under 40 ; Or, if the whole value of the expectation is given in one present payment, $£ 70$ added to a guinea and half for every year that the husband's age falls short of 50 , besides the payment just mentioned on account of disparity of age.

The value of this expectation at 4 per oent. is six guineas in annual payments; besides three guineas in present money, for every year that the husband's age exceeds the wife's, if he is between 40 and 50 ; and two guineas, if he is under 40: Or, if the whole value of the expectation is given in one present payment, $£_{56}$ added to $\mathscr{E}_{1 \ldots 5 s}$. for every year that his age falls short of 50 , besides the payment last mentioned on account of inequality of age ${ }^{2}$.

He

[^46]He that will give himself the trouble to calculate, agreeably to the directions in the Questions to which I have refemed, will find that, taking adl particular cases together, the rules now given come as near the truth as there is reason to desire in an affair of this nature, the defects in some cases being nearly compensated by the excesses in others.

These determinations are agreeable to the probabilities of living in Dr. Halley's, as well as the Northampton Table of Observations, or Tables 5 th and 17 th in the next volumed. These Tables seem to give a proper mediume between the different values of town and country lives. In the cauntry the probabilities of living are much higher; but in London, and probably in all great towns and some smaller ones, they are much lower.

It is proper to add, that, according to the values of lives deduced both from the London and Dr. Halley's Table, and taking interest as low as 3 per cent. all women
 Or, in annual payments, $\mathfrak{E}_{3.80}$ - $\mathfrak{E}_{3} \cdot 66-\mathfrak{E}_{3.13}$ Supposing the woman's age 10 years less than the man's, the same values will be, in single payments, $£_{5} 8.92-1$ $\mathfrak{E}_{5} 6.56$ - ${ }_{53} .66$-in annual payments $\mathscr{E}_{4} .63$ - \mathfrak{E}_{5} $\mathfrak{E}_{5 \cdot 41 \text {. It appears, therefore, that a society, supposing }}$ money improved at the rate of 4 per cent. might entitle all married men indiscriminately, who are under 50 years of age. to such an expectation as this for their wives, for either $\mathfrak{E} 60$ in one payment, or five guineas in annual payments. -But equity requires, that different payments should be made according to the different comparative ages of men athd their wives.
whose husbands are under 50 years of age, might be entitled to an annuity of $£ 24$ during life (the first payment to be made at the end of the year in which they shall be left widows) for the sum of $£_{100}$, supposing $\neq 3$ additional given on account of every year that they are younger than their husbands.-At 4 per cent. an annuity of $£ 30$ might be granted on the same terms.

In the year 1690 , the company of Mercers in London, adopted such a scheme as that last mentioned. For $\npreceq 100$ in one present payment, they entitled every subscriber to a lifeannuity for his widow of $£ 30$; and this, at that time, (when money bore 8 per cent interest) was considerably less than the value of the money advanced, supposing men and their wives of equal ages. As the interest of money sunk, they sunk also the annuity, first to $\not \mathscr{£} 25$ and then to $\nsubseteq 20$ and \mathscr{E}_{15}. But at last, after carrying on the scheme for above 50 years, finding the burden of the annuitants too heavy, and likely to go on increasing, they were obliged to drop the scheme and to stop payment. In a little time, however, by a parliamentary aid of $£ 3000$ per annum, they were restored to a capacity of making good all their engagements, and of paying their arrears.-Their failure is, indeed, much to be lamented; for, in consequence of it, the public has lost the benefit of an institution, that for many years promised the happiest effects, by encouraging marriage,
and affording relief to indigence. The rapid fall of the interest of money; their admitting purchasers at too advanced ages; and, particularly, their paying no regard to the difference of age between husbands and their wives, must have contributed much to hurt them. Some of the principal causes, therefore, which have rendered them unsuccessful, may be now avoided.

It must, however, be remembered, that - the issue of the best schemes of this kind must be in some degree uncertain. For want of proper observations ${ }^{\circ}$, it is not possible to determine what allowances ought to be made, on account of the higher probabilities of life among females than males. No prudence can prevent all losses in the improvement of money; nor can any care guard against the inconveniences to such schemes, which must arise from those persons being most ready to fly to them who, by reason of concealed disorders, feel themselves most likely to want the benefit they offer.

The societies, therefore, on which I have remarked in the first section of this chapter, would have reason to take warning from what has happened to the Mercers' Company, were the schemes on which they are formed perfectly unexceptionable. But I have demon-

[^47]strated that these schemes are very defective; and that the longer they are carried on, the more mischief they must produce. 'Tis vain (as appears from Quest. III.) to form such establishments with the expectation of seeing their fate determined soon by experience. If not more extravagant than any ignorance can well make them, they will go on prosperously for 20 or 30 years; and, if at all tolerable, they may support themselves for 40 or 50 years; and at last end in distress and ruin. No experiments, therefore, of this sort should be tried hastily. An unsuccessful experiment must be productive of very pernicious effects. All inadequate schemes lay the foundation of present relief on future calamity, and afford assistance to a few by disappointing and oppressing multitudes.

As the persons who conduct these schemes can mean nothing but the advantage of the public, they ought to listen to these observations. At present their plans are capable of being reformed; but they cannot, continue so always; for the greater number of exorbitant payments they now make to annuitants, the more they consume the property of future annuitants, and the less practicable a retreat is rendered to a rational and equitable and permanent plan ${ }^{6}$. They should, therefore, immediately ${ }^{*}$ either reduce-their schemes,

[^48]
'providing Annuities for Widows. 131

schemes, or change them into one of those which I have proposed. But, I am afraid, this is not to be expected. The neglect with which they have received some remonstrances that have been already made to them, gives reason to fear, that what has been now said will be in vain; and that those who are to come after them, must be left to rue the consequences of their mistakes.
S E C T. IV.

Account of some foreign Institutions for the Benefit of Widows.
IN the Preface to the first edition of this Treatise, I took notice of an institution for the sale of annuities payable on survivorship, established at Amsterdam, which seemed to be then much encouraged, and into which, I had been informed, many had entered from different parts of Europe. This was so wretched a deception that it was impossible it should long stand its ground; and I am told that it now exists no more. I have, therefore, expunged the notice I took
their lowest annuity $\mathscr{\not} \neq 10$, the next $\mathscr{\mathscr { E }} 20$, and the highest \mathscr{E}_{3}, they would probably be safe. But, after proceeding on their present plan some years longer, such a reduction would by no means be sufficient.

132 Account of some foreign Institutions

of it in that Preface; and I will not here give any further account of it.

In 1739, an institution was established in Denmark under the patronage and guaranteeship of the King of Denmark, which, without regarding ages, promised pensions to widows at the rate of 40 rixdollars per ann. for life, from the commencement of widowhood, for every present payment of 110 rixdollars. This being less than the true value of such pensions, the fate of this scheme has been the same with that of the Mercers' Company mentioned in page 128. At the end of the year 1778, its whole fund was exhausted, and the King of Denmark found himself burdened with the support of 700 widows, and an obligation to support as many more as would be derived from 1500 marriages then remaining undissolved.

At Bremen, an institution was established in 1760 , which promised annuities to widows for a payment on admission of a sum equal to one yearly payment of the annuity purchased, and an annual contribution during marriage of 15 per cent. (or a little more than a 7 th) of the annuity. These payments are not much more than half the proper compensation for the annuities. The conductors of the scheme have therefore been obliged to reduce the annuities 10 per cent.; and they will soon be obliged to reduce them much more.

The states of the duchy of Calenberg, of which
which Hanover is the.capital, established in 1767 a like scheme, but on terms still, more deficient; for, though it differed from the two former schemes in paying a regard to the ages of married persons, yet, notwithstanding several augmentations, the contributions required by it did not two years ago come up to half the value of the annuities. Great numbers, influenced probably by the lowness of the terms and the authority of the states, have been induced to encourage this institution. In 1779, it had annuities to pay to 600 widows, and consisted of no less than 3800 members or subscribers whose widows would be entitled to annuities. In consequence of a rapid increase, its insufficiency was not then become palpable enough to force either a dissolution, or a timely and effectual reformation. It was, therefore, likely to lay the foundation of great confusion and distress.

There are probably many other foreign bubbles of this kind; of which I have no knowledge. The information which has enabled me to give this account I owe to Mr. Oeder of Oldenburg; and it is with. particular satisfaction, that I can from him on this occasion add an account of one foreign institution for the benefit of widows which is founded on just principles, and likely to be productive of great good.-The plan of this institution has been formed and the calculations for settling its terms have been

134 Account of some foreign Institutions

been made by Mr. Oeder, who appears indeed to possess an acquaintance with this subject so extensive and correct as to be perfectly qualified for such an office.-This institution is intended only for the benefit of the inhabitants of the diocese of Lubec and the duchy of Oldenburg; and the sovereign of this state has himself given it the sanction of a statute, and guarantied to his subjects the advantages it promises. At prices deduced by calculations at 4 per cent. from Mr. Susmilch's Table of Observations, (See the Tables in the next volume), and agreeing nearly with the prices deduced by the rules in Quest. I. and IV. from the Northampton Table (or Table XVII. in the next volume), it offers to a married man any annuity for his widow not exceeding 500 rixdollars, (or about $£ 88$ per ann.) d payable for life; but with a power reserved to the husband of directing that it shall be applied to the support of his children in case his widow should marry.

This institution farther enables a parent to provide for his children annuities, (not exceeding 500 rixdollars) payable to them in the event of their survivorship, till they are 25 years of age.

For example. To a husband, aged 35, this institution promises a life annuity of $£_{10}$ payable to his widow, for either an annual pay-

[^49]iment of $\mathfrak{£} 2 . . .15 \mathrm{~s}$. $\mathfrak{£} 3 \ldots 1 \mathrm{~s}$. $\mathfrak{£} 3 \ldots 75 \ldots 4 \mathrm{~d}$. $\& \mathrm{c}$. or a single present payment of $£ 31 \ldots 7$ s.
 he is of the same age with his wife, or 5 , 10, \&c. years older.

And if he wishes to make a provision for any of his children, provided he should leave them orphans under age, he may purchase annuities payable to them from the time they shall happen to survive till they are 25 years of age, at the rate of an annuity of $\notin 10$ for every annual payment during the joint lives, of $£_{1 \ldots 17 s \ldots 4 d .} £_{1 \ldots 14 s}$. $£_{1} . .75: . .4 d$. or a single payment of $£_{19 \ldots}$ 14s.-£18...12s. $9 \mathrm{~d}^{\text {. }} \mathfrak{E}^{\mathfrak{E}} 12 \ldots 7 \mathrm{~s}$. according as the child's age is two, five or ten 'years. These values are greater or less as the age of the parent is greater or less; and all the prices of such annuities, and also of annuities for widows, are specified in Tables, for all ages and all differences of ages.

The sufficiency of the receipts to answer the expences in this institution, as far as it provides annuities for widows, has been proved by Mr. Oeder in the clearest manner from accounts which have been collected in

[^50]the duchy of Oldenburgh of the duration of 1273 marriages, and compared with accounts of the duration of the widowhoods derived from these marriages. - One circumstance in these accounts deserves particular notice.

The ages of the men, one with another, when the marriages just mentioned commenced, was $32 \frac{1}{2}$ years; of the women 28 years. The men lived after marrying $27 \frac{3}{4}$ years; the women, 31 years and nine tenths. The former, according to Mr. Susmilch's Table (and also nearly according to the Northampton Table of Observations), should have lived only 27 years and one tenth; and the latter, 29 years and eight tenths. The former, therefore, having exceeded the duration of life exhibited in the Tables only six tenths of a year, but the latter having exceeded it above two years, it follows that women, notwithstanding the hazards of the critical periods and of child-bearing, live longer than men.

I will add, that by examining 154 of these marriages, I find their duration to have been, one with another, 21 years and a quarter, and the duration of the survivorship of the widows derived from them, 19 years. Had Mr. De, Moivre's hypothesis of an equal decrement of life been just, the latter would have been longer than the former. The reason why the contrary happens has been given in p. 113, \&c.

In these marriages (if I may judge from examining
examining only 140 of them) four widows were left to three widowers, which shews a chance of survivorship in favour of the wife in marriage, greater than could have taken place, had there been no other reason for it than inferiority of age.

At Hamburgh, an annuity scheme has been lately established of a more comprehensive nature than any of the schemes which have been hitherto mentioned; but the account of it will be more properly given at the conclusion of the last section of this Chapter.

$$
\text { S E.C T. }{ }^{\circ} \text { V. }
$$

Of Schemes for providing Annuities for old Age.
A GENERAL disposition has lately shewn itself, to encourage schemes for granting annuities to persons in the latter stages of life; and this has occasionod the 6th Question in the former chapter; and, as a further and more particular direction in cases of this kind, I have thought it necessary here to give the following Table.

Values

138 Of Schemes for providing

Values of Il per \&nn. for life, after 50 , to persons whose ages are	Values in one present payment, interest 4 per cent.	Interest 3 per cent.	Values in annual payments till 50, to begin at the end of a year, interest 4 per ct.	Interest 3 per sent.
10	1.235	2.015	.079	.113
15	1.583	2.444	.106	. 146
20	2.028	2.989	.146	.193
25	2.594	3.644	. 203	.259
30	3.369	4.508	. 297	. 366
35	4.446	5.667	. 466	.559
40	5.953	7.232	. 822	. 950
Values of the same annuity after 55 , to ages			$\left\lvert\, \begin{aligned} & \text { Values in an- } \\ & \text { nual payments } \\ & \text { till } 55 \text {. } \end{aligned}\right.$	
30	2.114	2.937	.197	.211
35	2.722	3.632	. 241	.297
40	3.732	4.708	.394	. 464
45	5.088	6.115	.703	.803
Values of the same annuity, after 60 , to ages			$\begin{aligned} & \text { Values in annual } \\ & \text { payments till } 60 \end{aligned}$	
35	1.667	2.290	.135	.168
40	2.234	2.923	. 203	.245
45	, 3.043	3.811	.327	. 384
- 50	4.255	5.061	.600	.679

The numbers in the 2 d and 3 d columns of this Table, multiplied by any annuity, will give the value of that annuity in a single payment, to be enjóyed for life, by the ages corresponding to those numbers in the first column, after the age at the head of that column.
column.-And in the same manner; the numbers in the 4 th and 5 th columns will give the values in annual payments.-Thus: The value of $£ 44$ per annum, to be enjoyed for life, after 50 , by a person now 40, (interest at 4 per cent.) is 5.953 multiplied by 44 , or $£_{261.9}$ in a single payment; and .822 , multiplied by 44 , or $\neq 36.17$, in annual payments till 50 , the first payment to be made at the end of a year.

In order to find the same values, partly in annual payments, and partly in any given entrance or admission money; say, "As the va" lue of the given annuity in a single payment, " (found in the way just mentioned) is to the "، given entrance money; so is its value in an"c nual payments, to a fourth proportional; " which, subtracted from the value in annual " payments, the rematnder will be the annual " payment due, over and above the given " entrance money."

EXAMPLE.

Suppose a person now 40, to be willing to pay $\neq 200$ entrance-money, besides such an annual payment for 10 years as shall, together with his entrance-money, be sufficient to entitle him to a life-annuity of $\mathscr{E} 44^{4}$ after 50. What ought the annual payment to be?

ANSWER.
$\mathscr{E} 8.5$--For, $\mathscr{E}_{261.9}$, is to \mathscr{E}_{200} as $\not{ }^{26.17}$.

[^51]$\mathscr{E} 6.17$, to $\mathscr{E} 27.62$; which, subtracted from

This Table has been calculated from the probabilities of living in Table V. in the next volume, and Mr. DeMoivre's valuation of lives. The probabilities of life among the inhabitants of London, are (as I have often had occasion to observe) much lower than among the generality of mankind; and the values in the preceding Table, had they been given agreeably to the London Observations, would have been less. But, certainly, an office or society, that means to be a permanent advantage to the public, ought always to take higher rather than lower values, for the sake of rendering itself more secure, and gaining some profits to balance losses and expences.

There have lately been established, in London, several societies for granting such annuities as those now mentioned; and he that will compare their true values, as they may be learnt from the preceding Table, with the terms of admission into these societies, as given in their printed Abstracts and Tables, must be surprised and shocked. They are all impositions on the public, proceeding from ignorance, and encouraged by credulity and folly.

It has been shewn; that the proper payment (allowing compound interest at 4 per cent.) for an annuity of $£ 44$ to be enjoyed by
a person
a person now 40, for what may happen to remain of his life after 50 , is $£_{200}$ in admis-sion-money; besides $£ 8.55$, or $£ 8 . . .11 \mathrm{~s}$. in annual payments till he attains 50 , the first of these payments to be made at the end of a year.-The conditions of obtaining this annuity, according to the present Tables of the Laudable Society of Annuitants for tbe Benefit of Age, consisting of about 1300 members are ${ }^{f} £ 76 \ldots 17 \mathrm{~s}$. in admission-money; and £6...14s. in annual payments.-According to the Tables of the society of London Annuitants for the Benefit of Age, the conditions of obtaining the same annuity are $£^{2} 0$ in admissionmoney, and $£_{10}$ in annual payments.-The Equitable Society of Annuitants requires for the same annuity $£ 38 \ldots 10$ s. in admissionmoney, and $£_{13}$ in annual payments. : The true value is, over and above the admissionmoney just mentioned, an annual payment of
 or an annual payment of $£_{36} \ldots$...15s. (interest reckoned at 3 per cent.)-The London Union Society for the comfortable support of aged members promises an annuity of no less than 50 guineas for life, after 50 , to a person now 40, for $£_{40 . . .10 s \text {. admission-money, and }}$ $\mathscr{E} 7$ in annual payments.

The Amicable Society of Annuitants for the

[^52]benefit
benefit of age, promises an annuity of $£ 26$ per annum, for life, to a person now 40, after attaining 50, for $£_{28 . . .16 s \text {. in admission- }}$ money, and \mathscr{E}_{6} in annual payments. -The true value of this annuity is $£ 28 \ldots 16$ s. in admis-sion-money, and $£_{17 \ldots 8 s}$. in annual payments, (interest supposed at 4 per cent.) ; or the same sum in admission-money, and $\mathscr{E}^{20} . .18 \mathrm{~s}$. in annual payments, interest supposed at 3 per cent.

The Provident Society for the benefit of age, consisting of 1280 members, promises an annuity of $\mathscr{E} 25$ to a person now 40 , after the age of 50 , for 34 guineas in admissionmoney, and eight guineas in annual payments. The true value is, 34 guineas in ad-mission-money, and £15...12s. in annual payments, interest at 4 per cent. ; or, the same sum in admission-money, and $£_{19}$ in annual payments, interest being at 3 per cents.

But I will not tire the reader, by going, in this manner, through the schemes of all these societies. The contrivers of them, it is certain, can know nothing of the principles on which the rule in Quest. VI. and the demonstration of it in Note (B) at the end of this volume, are founded; and, therefore, if unwilling to be guided by the authority of mathematicians, it may not be possible to convince them of

[^53]their mistakes. I will, however, offer to them the following demonstration, which will be understood without' difficulty, by every one who knows how to compute the increase of money at compound interest.

The value of a life at 50 , (interest being at 4 per cent.) is $11_{3}^{\frac{1}{3}}$ years purchase by Table VI.- in the next volume. For an annuity, therefore, of $£ 44$ per annum for life, to be enjoyed by a person at this age, \mathscr{E}_{498} ought to be given. $T w o$ in three of a number of persons at the age of 32 will (by Tables V, VIII, and XVII, in the next volume) live to 50 ; and therefore, in order to be able to pay an annuity to them of \mathscr{E}_{44} for life, after 50, the money now advanced by every three, ought to be such as will, in consequence of being laid up to be improved, increase in 18 years to double $£_{498 \text {, that is, }}$ to $£ 996$.-From the preceding Table it may be learnt, that the money which ought to be advanced by every single person is $\not £_{165}$, or by three persons $£_{495}$; and this, in 18 years, will (as may be learnt from Table III. in the next volume) double itself, or increase to just the sum that will then be the value of the annuities to be paid.-But the money required in this case by the Laudable Society, is $\mathscr{E}_{14 \ldots 11 s \ldots 9 \text {. from each member at ad- }}$ mission, besides an annual payment of $\neq 4$. The admission-money, therefore, of two members, being $\mathscr{E} 29 . . .3$ s...6d. may be increased to twice this sum, or to $£ 58 . . .7$ s.

An annnal payment of $£_{4}$ for 18 years will, if perfectly improved at 4 per cent. compound interest, increase to \mathscr{E}_{102}; and two such annual payments will increase to $£_{204}$, as may be learnt from Table IV. in the next volume.

The whole pay, therefore, of two members will produce at the end of 18 years $£_{262 \ldots 75 .-A ~ t h i r d ~ p a r t, ~ I ~ h a v e ~ s a i d, ~ w i l l ~}^{\text {. }}$ die before 50 years of age, and these will live one with another 9 years. An annuity of $£ 4$ for this time, will produce a capital of $\mathscr{E}_{42 . . .6 \text { s. See Table IV. in the next vo- }}$ lume; and this capital improved for nine years more will increase to $£ 60$. The whole profit, therefore, from the member who will die is, his admission-money doubled and added to $£ 60$, or $£ 89 \ldots 3 s \ldots 6 d$. And this sum added to $£ 262 \ldots 7$ s. makes $£ 351 \ldots 10 \mathrm{~s} . . .6 \mathrm{~d}$. the whole money with which the society can be provided, at the end of 18 years, to bear the expence of two life-annuities, worth together $£ 996$.

By a similar computation it may be found, that the improvement of money at only 3 per cent. will sink the former sum to $£ 324$ at the same time that the values of the annuities will be raised to $£_{1100}$.

The deficiencies in the schemes of most of the other societies, are no less consider-able.-What confusion then must they produce some time or other? How barbarous is it thus to draw money from the public by promises
promises of advantages that cannot be obtained ? Have we not already suffered too much by bubbles?

I have said, that these societies are " im" positions on the public, proceeding from " ignorance, and supported by credulity and " folly." But this is too gentle a censure. There is reason to believe that worse principles have contributed to their rise and support. The present members, consisting chiefly of persons in the more advanced ages, who have been admitted on the easiest terms, believe that the schemes they are supporting will last their time, and that they will be gainers. And as to the injury that may be done to their successors, or to younger meimbers, it is at a distance, and they care littlè about it. Agréeably to this principle, the founders of these societies begin so low as not to require perhaps a fourth or a fifth of the values of the annuities they promise. Afterwards they advance gradually, just as if they imagined, that the value of the annuities was nothing determinate, but increased with every increase of the society. But, as no ignorance can believe this, the true design appears to be, to form soon as large a society as possible, by leading the unwary to endeavour to be foremost in their applications, lest the advantage of getting in, on the easiest terms, should be lost. It is well known, that these arts have succeeded wonderfully; and that, in consequence of them, these societies

[^54]now consist of persons who, for the same annuities, make higher or lower payments according to the time when they have been admitted; and the generality of whom, therefore, must know, that either more than the values have been required of the members last admitted; or, if not, that they are themselves expecting considerable annuities, for which they have given no valuable consideration, and which, if paid them, must be stolen from the pockets of some of their felm low-members ${ }^{1}$.

I do not, however, mean to condemn all institutions of this kind. They may be very

- useful, if the full values are taken, and proper care is used in the improvement of money. Interest, in these cases, ought not tobe reckoned higher than 3 per cent. and, supposing money improved at this rate, a person, for a single payment of $£ 50$ before he is 40 , might be entitled to a life-annuity of 10 gui-

[^55]neas after 55 ; or, if he chuses it, to a lifeannuity of $£_{17}$ after 60 . But if he pays the same sum before he is 34 , he might be entitled to a life-annuity of \mathscr{E}_{14} after 55 , or $£_{22}$ after 60 . \mathscr{E}^{25}. would purchase for him balf these annuities; and $£_{100}$ double.

A society or office that. would go on this plan, might do great service. Persons in the lower stations of life might be brought to a habit of industry; in the beginning of life, by striving to get $£^{25}$, or $\mathscr{E} 50$, beforehand in order to purchase such annuities, and thus to make provision for themselves in the more advanced parts of life, when they will be incapable of labour ${ }^{i}$.

$$
\text { L } 2
$$

It
 " money

It is proper to observe here, that institutions of this kind would furnish one of the safest ways of providing for widows.-A married man might, by paying $£_{100}$ before his wife attained 40 , intitle her, after 55 , or 60 , to a life-annuity of $£ 21$, or $£ 34$. Or, by paying the same sum before she attained 34, he might entitle her, after the same ages, to a life-annuity of \mathscr{E}^{28}, or \mathscr{E}^{44}; and in this case he would have a chance of sharing himself in the benefit of the annuity.

I have called this the safest way of providing for widows, because attended with none of the dangers arising from disproportion of age between men and their wives, and from the admission of persons labouring under concealed distempers.

I cannot conclude this Section, without mentioning the following plan of a provision for Old Age.

Lst 13 guineas be given as entrance-money; and let besides $\not £_{1}, \npreceq 2, \npreceq 3, \npreceq 4, \& c$. be given at the beginning of the $1 \mathrm{st}, 2 \mathrm{~d}, 3 \mathrm{~d}, 4 \mathrm{th}$, \&c. years, as the payments for these years respectively; and let the last payment be $£_{16}$ at the beginning of the 16 th year. All these payments put together will, according to the
" money deducted from the sum required when they " enter.-Those who chuse to deave the house, receive, " during the remainder of their lives, a certain but small " interest for the sum which they paid at admission."
${ }^{k}$ The same payment before 30 , would entitle to an annuity of $\mathscr{E}^{2} 2$ after 50 .

probabilities

probabilities of life in the 5 th or 8th Tables in the next volume, (interest being at 4 per cent.) entitle a person, whose age was 40 when he begun them, to an annuity, after 15 years, beginning with $£_{15 \text {, and in- }}$ creasing at the rate of $£_{1}$ every year, till at the end of 15 years; or ${ }^{1}$ when he has reached to 70 , it becomes a standing annuity of $£_{30}$ for the remainder of his life.

If the addition of three guineas is made to the entrance-money, for every year that any life between 30 and 40 falls short of 40 , the value will be obtained nearly, of the same annuity to be enjoyed by that life, after the same number of years, and increasing in the same manner, till it becomes stationary and double._This plan is particularly inviting, as it makes the largest payments become due, when the near approach of the annuity renders the encouragement to them greatest; 'and as, likewise, the annuity is to increase continually with age, till it comes to be highest ${ }^{m}$, when life is most in the decline,
${ }^{1}$ According to the probabilities of life in the London Table, this annuity should be greater.-A Theorem for finding what the annuity ought to be in these cases, is given in Note (I), at the end of this volume.
${ }^{m}$ The lower part of mankind are objects of particular compassion, when rendered incapable, by accident, sickness, or age, of earning their subsistence. This has given rise to many very useful societies among them, for granting relief to pne another, out of little funds supplied
cline, and when therefore it will be most useful.-It is further a recommendation of
by weekly contributions. A society of this kind, formed on the following plan, would probably thrive.

Let the society, at its first establishment, consist of 100 persons, all between 30 and 40 ; and whose mean age may therefore be reckoned 36 ; and let it be supposed to be always kept up to this number, by the admission of new members, between the ages of 30 and 40 , as old members die off. Let the contribution of each member be four-pence per week, making, from the whole body. än annual contribution of $\Xi_{5} 8 \ldots 175$. - Let it be further supposed, that seven of them will fall every year into disorders, that shall incapacitate them for seven weeks.$\mathfrak{E}_{3} 0 . \ldots 25$. of the annual contribution will be just sufficient to enable the society to grant to each of these 125. per week, during their illnesses. And the remaining \mathscr{E}_{55} per annum, laid up and carefully improved at $3 \frac{1}{2}$ per cent. will increase to a capital that shall be sufficient, according to the chances of life in Tables V, VIII, and XVII. in the next volume, to enable the society to pay to every member, after 67 years of age, or upon entering his 68 th year, an annuity, beginning with \mathscr{E}_{5}, and increasing at the rate of \mathscr{E}_{1} every year for seven years, till, at the age of 75 , it came to be a standing annuity of \mathscr{E}_{12} for the remainder of life.

Were such a society to make its contribution seven pence per week, an allowance of 155 . might be made, on the same suppositions, to every member during sickness ; besides the payment of an annuity beginning with \mathfrak{E}_{5} when a member entered his 64 th year, and encreasing for 15 years, till, at 79, it became fixed for the remainder of life at $\mathfrak{E} 20$.

If the probabilities of life are lower among the labouring poor, than among the generality of mankind, this plan will be so much the more sure of succeeding.

In 1773, a pamphlet was published, entitled, A Proposal for establishing Life Annuities in Parishes, for the Benefit
this plan that less depends in it on the improvement of money than in most other plans.

Bonefit of the industrious Poor.—" It is,"'says this writer, "a common (a) observation that the money annually " raised for the poor, amounts to, at least, a million a "c year; and that yet in many places they are but indif" ferently provided for. To make provision for one's
cc old age is so natural a piece of prudence, that it seems
cc at first sight.wonderful, that it should not be generally
"c practised by the labouring poor, as it is almost uni-
" versally by persons in the higher paths of industry:
" Nor can their negligence in this respect be accounted
" for, in any other way so naturally, as by ascribing it
" to their wanting proper opportunities of employing the
${ }^{6}$ money they might save, in some safe and easy method
" that would procure them a suitable advantage from it
" in the latter periods of their lives. They know, for
" the most part, but little of the public funds; and when
" it happens that they are acquainted with them, the
" smallness of the sum they would be entitled to receive,
" as the interest of the money they could afford to lay
"c out in them, is no encouragement to them to dispose
" of it in that way. What inducement, for instance,
"can it be to a man who has saved ten pounds out of his
" year's wages, to invest it in the purchase of 3 per cent.
"Bank annuities, to consider that it will produce him six
" or seven shillings a year? It is but the wages of three
"days labour. And if they lend their money to trades-
" men of their acquaintance, as they sometimes do, it
6 happens not unfrequently that their creditor becomes a
" bankrupt, and the money they had trusted him with is
" lost for ever; which discourages others of them from
" saving their money at all, and makes them resolve to
" spend it in the enjoyment of present pleasure. But if
(a). The amount of the poor-rate for one year at the end of the reign of king Charles II. was \&665,362. See Davenant's works, Vol. I. p. 38.-In 1777, it was $\notin 1,556,804$, according to the returns made in that year to parliament by the overseers of the poor.

plans.-But I must leave these hints to be pursued by others.

The
" they saw an easy method of employing the money they could spare in such a manner as would procure them " a considerable income in return for it at some future " period of their lives, without any such hazard of losing " it by another man's folly or misfortune, it is probable
" they would frequently embrace it : And thus a dimi-
" nution of the poor rate on the estates of the rich, and
" increase of present industry and sobrièty in the poor, and
" a more independent and comfortable support of them
" in their old age, would be the happy consequences of
" such an establishment. Now this might be effected in
" the following method."
First, " Let the church-wardens and overseers of every paris! be impowered, by act of parliament; to grant
" life-annuities to such of the inhabitants of the parish as
" shall be inclined to purchase them, to commence at
" the end of one, two, or three years, or such other
" future period of time as the purchaser shall chuse, and
" to be paid out of the poor rates of the parish, so that
" the lands and other property in the parish that is
" chargeable to the poor-rate, shall be answerable for
"s the payment of these annuities. This circumstance
" would give these annuities great credit with the poor
" inhabitants, by setting before them a solid and ample
" security for the payment of them."
Secondly, " Let the annuities, thus granted to the
" poor inhabitants, be such as arise from a supposition
" that the interest of money is 3 per cent. or some higher
" rate of interest, if the church-wardens and overseers of
" the poor think fit to make use of such higher interest."
Thirdly, "But at the rate of 3 per cent. the purchaser
" should have a right to an annuity, and the church-
"wardens and overseers of the poor should be compell-
able to grant it."
Fourthly, " No annuity depending on one life should
" exceed ※́20 a year.".
Fifthly, "No less sum than \mathfrak{E}_{5} should be allowed
" to be employed in the purchase of an annuity.- "This"

The body of dissenting ministers in London had under consideration some time ago

"This is to avoid intricacy: and multiplicity in the ac-
" counts,"
Sixthly, "An exact register of these grants should be
" kept, by the church-wardens and overseers of the
" poor, in proper books for the purpose, in which the
" grants should be copied exactly, and the copy of each
" grant subscribed by the person to whom it is granted,
"And this copy, in the register-book of the parish,
" should be good evidence of the purchaser's right to
" the annuity, in case the original deed of grant to the
" purchaser, which was delivered to him at the time of
" the purchase, should be afterwards lost."
Seventhly, "The money thus paid to the church-
" wardens and overseers of the poor for the purpose of
" life-annuities, should be employed in the ptrchase of
" 3 per cent. Bank-annuities in the joint names of all the
" church-wardens and overseers, and by them transferred
" at the expiration of their offices to their successors, and
" so on to the next successors for ever, so as to be
" always the legal property of the church-wardens and
" overseers of the poor. for the time being, in trust for
" the persons who should be entitled to the several life-
" annuities, granted in the manner abovementioned; and
" the interest of this money should be received every
" half year, and invested in the purchase of more prin-
" cipal continually, so as to make a perpetual fund for
" the payment of the annuities, \&c. \&c. Deficiencies,
" if any should ever happen, to be made good by the " poor-rates, \&c. \&c."

The very able and public spirited writer of the pamphlet from which I have taken this quotation, now Cursitor Baron of the Exchequer, took great pains to carry into execution the design he has explained in it. With this view, a bill, with suitable Tables annexed, was brought into the House of Commons and supported by the excellent Sir George Saville, the late Mr. Dowdeswell. and many others of the most respectable members. It passed that House without much opposition, but was rejected in the House of Lords.
a plan

154 Additional Account of the Societies
a plan of this kind; and a set of Tables were composed for them. The design was dropped; but as it is possible it may be taken up again, and the Tables may be of use, I have thought fit to preserve them by inserting them among the additional Tables and Observations in the next volume.

Additional Account of the Societies for the Benefit of old Age.
SINCE the publication, in three former editions of the Observations in the preceding Section, almost all the Societies mentioned in it, convinced of the insufficiency and pernicious tendency of their plans, have dissolved themselves, and distributed among their subscribers the money they had paid, with such interest or profit as remained after deducting the expences of management; and there are now left within my knowledge only two of these societies which require any particular notice. I mean, the Amicable and the Laudable Societies for the Benefit of Age. The first of these Societies mentioned in p. 142, finding upon examination that, instead of an annuity of $£_{26}$, they could not in reality afford to pay a higher annuity than \mathscr{E}, determined, with great fairness, to leave it to the option of all their members, either to continue their contributions with a view to this reduced annuity, or to 'take back
for the Benefit of old Age. 155
back all they had paid and withdraw. Near two hundred members having chosen the former, the Society now consists of them only, and therefore can scarcely be in any danger.-The other Society, mentioned p. 141, has also sunk the annuity it promises from \mathscr{E}_{44} to $\mathscr{E} 24$; but it is certain, that it cannot permanently pay to all its members a greater annuity than \mathfrak{E}_{15}. I should lose too much time were I to give an account of the calculations which prove this. He that would see it demonstrated with all possible clearness, should consult a Tract published in 1777, by Mr. Dale, entitled, A Supplement to Calculations deduced from first Principles, \&c. No person who understands common arithmetic can avoid being convinced by the evidence offered in this Tract, nor can any bonest man avoid being shocked by the narrative it contains of the obstinacy with which the majority in this Society have persevered in error, contrary to the efforts of the more respectable part of the Society; and in defiance of reason, justice, and humanity. I cannot, in short, speak more properly on this subject than in the words of Mr. Morgan in his Treatise on the Doctrine of Life Annuities and Assurances, p. 47. "There is one Society " for the benefit of old age still left, on " which, none of the calls of justice and "، humanity have been able to make any pro-" per impression. I mean the Lauduble So-
" ciety of Annuitants, whose office is held "، at the bottom of Bartbolomerv-Lane. In " opposition to the plainest evidence, this " Society goes on to offer double the annuity " it can afford to pay; and the late trans"، actions in it (as related by Mr. Dale in " his Supplement) exhibit an instance of " such an obstinate and wilful perseve" rance in imposition as hath seldom been " equalled.-I am sorry to add," says Mr. Morgan, " that this censure is applica" ble to another Society called also La uda-
" ble, but in reality pernicious, as many
". suffering widows will some time or other " experience."

It is here said, that this Society promises double the annuity it can pay; that is, $£_{24}$, when in reality it can pay only $£_{12}$; whereas I have said that it may pay $£ 15$. In order to explain this difference, it is necessary to observe that Mr. Dale has shewn that $£_{15}$ nearly is the annuity which the Society can afford to pay according to the chances of living in Dr. Halley's or the Breslaw Table; but that the chances of living in the Society had for eight years before 1770^{n}, (when the number of the Society was above 1300 , and its stock near $£ 96,000$) been found by particular enquiry to be not much less than double to those at the same

[^56]ages in the Table; from whence it follows, that the annuity payable by the Society being more valuable, it ought not to be so high as $£_{15}$, nor probably more than $£ 12$.-The fact now mentioned is important, but not singular; for it has been found to take place in other similar situations ${ }^{\circ}$; and the reason is, that Dr. Halley's and most other Tables of Observations give the chances of living as they exist in towns among men of all sorts taken in the gross; whereas such Societies as those for the benefit of old age, and in general all purchasers of life-annuities for themselves, must consist of a selection of the best lives.

POSTSCRIPT.

Since the preceding Observations were written, I have been informed that this Society has reduced its annuity from £24 to $£ 20$. This reduction, together with the high interest at which money may be now improved (particularly in the short annuity), will prolong considerably the duration of the Society; but unless it is favoured by uncommon events, cannot make it permanent ${ }^{p}$.

> SECT.

[^57]
S E C T. VI.

Of the Amicable Society for a perpetual Assurance Office: And the Society for Equitable Assurances on Lives and Survivorships.
THE 1oth Problem has been given, with a particular view to the corporation of the Amicable Society, for a perpetual AssuranceOffice on single lives, kept in Serjeant's-Inn. This Society was established in 1706, and is
appeared from an investigation of their affairs which had been made by myself in 1786, that the Society could not then afford to pay their annuitants more than six guineas a year. The number of their members at that time had sunk from 1300 to 204, while their claimants had increased to 564 , and their capital which had once consisted of £96,000 stock in the three per cents, had been diminished more than one half.-It has, however, been found from subsequent experience that, low as those annuities were then reduced, the circumstances of the Society required that they should be reduced still lower.In the year 1796, in consequence of a fresh application from this Society, I was engaged a second time in the examination of their affairs.-At that period the annuitants were 471 and the members who had not become claimants amounted only to 24 -The residue of their capital had been changed from three per cents into $£_{1660}$ per annum in the Short, and $\mathscr{E}_{3} 60$ per annum in the Long Annuities, which, from the extreme depression of public credit were then hardly worth $£_{17,000 \text {.-This depres- }}$ sion, more than any other cause, had produced such a deficiency in the accounts of the Society as to render it absolutely necessary to reduce the annuities from 6 guineas to $£^{2} 5$-A. reduction, aided as it has lately been by the improved state of the public funds, which may perhaps secure the Society during the remainder of their existence from the mortification of submitting to further retrenchmeints.
the only one I am acquainted with, which has stood any considerable trial from time and experience. It is limited by its charter to the disposal of shares or numbers (not to exGeed 2000) held by single lives, and entitling to claims when the lives drop. For each of, these shares every purchaser pays at entrance \& 7...10s. besides $\mathscr{E}_{1 \ldots 11 \mathrm{~s} \text {. as the first }}$ quarterly payment of $\notin 6 . . .4$. . per ann. to be continued during life. An annual dividend of $£ 1 \ldots 4$, for each share is allowed to every purchaser out of the profits of the corporation, which reduces the annual payment for each, share to \mathscr{E}_{5}. The nett annual income arising from all the annual payments (making $\mathcal{E} 10,000$ when the Society is full, and all the shares are disposed of), is equally divided among the nominees of such members as die within the year; which dividend, therefore, is more or less at the end of every year as a smaller or greater number of the members happen to die in that year. In 1757, the Society engaged that this dividend though it might be more, should not be less on each share than \mathscr{E}_{125}, and in $1770^{\text {q }}$, that it should not be less than $£_{150 .- \text { No one }}$ person is allowed to purchase more than

- In 1757, the Society had accumulated by its savings $\mathcal{E}_{25,300}$ three per cent. stock, which in 1770, had been increased to $\mathscr{E}_{33} 300$; and a part of this stock was in these years appropriated to the payment of claims, whenever the number of them in any year should happen to be so great as to render the annual contributions insufficient to make them up to the guarantied sums.
three shares; nor are any admitted to be purchasers whose ages exceed 45, or fall short of 12 ; and all between these ages are admitted on the same terms.

This Society has, I doubt not, been very useful to the public; and its plan is such, that it cannot fail to continue to be so. It might, however, certainly have been much more useful, had it gone from the first on a different plan. It is obvious, that regulating the dividends among the nominees by the number of members who die every year, is not equitable; because it makes the benefit which a member is to reseive to depend, not on the value of his contribution, but on a contingency; that is, the number of members that shall happen to die the same year with. him. This regulation must also have been disadvantageous to the Society; as will appear from the following account of the natural progress of the affairs of such a Society, when established on a right plan.

Suppose a thousand persons whose common age is 36 , to form themselves into a Society for the purpose of assuring a particular sum at their deaths, to such persons as they shall name, in consideration of a particular annual contribusion to be continued during their lives. Suppose the annual contribution to be $\notin 5$, and the first payment ${ }^{r}$

[^58]to be made immediately. Suppose, like」 wise the original number of the Society to be constantly kept up by the admission of new members, at 36 years of age, in the room of such as die.-In Question X. p. 32, it appears, that an annual payment, beginning immediately, of $£ 5$ during a life now at the age of 36 , should entitle, at the failure of such a life, to $£_{172}$, reckoning interest at 4 per cent. and taking Mr. De Moivre's valuation of lives.-A thousand persons, all 36 years of age, will die off at the rate of 20 every year. The disbursements, therefore, of such a Society will be, the first year, 20 times $£ 172$, or $£ 3,440$, and its income will be $£ 5000$. It will, therefore, at the end of the year, have a surplus of $£_{1,560}$ to put to interest.-In consequence of the yearly accessions to supply vacancies, the number dying annually will be always increasing after the first year. In 50 years - it will get to a a maximum; and then the affairs of the Society will become stationary, and the number dying annually will be 40 , and its annual expence will be $\mathscr{£ 6 , 8 8 0 \text { exceeding the }}$ annual contribution, $\mathscr{E}_{1,880}$. But, in the mean time, by improving its surplus monies, it will have raised a capital equal to this ex-

[^59]cess, and, consequently, its affairs will be fixed on a firm basis for all subsequent times.

Suppose now that such a Society, at its establishment, should resolve to divide its whole yearly income among the nominees of deceased members. The effect of this would be, that no capital could be raised; that the dividends payable to nominees would diminish continually, till, at the time that the greatest number of members came to die annually, (or at the end of 50 years), they would be reduced to balf; and that all claimants, after this period, would receive too little, because the first claimants had received too mucht.

[^60]At the time of the institution of the Amisable Corporation, the interest of money was at 6 per cent. and, as they admit none whose ages are not under 45, the mean age of admission cannot be much greater than 36. It appears; therefore, that had they avoided the error now mentioned, and gone from the first on the plan I have described, they might have all along paid to each nominee $£_{172}$; besides raising a capital much greater in proportion to the number of members, than that I have specified, from the premiums at admission, forfeitures, and other advantages which they have enjoyed ${ }^{u}$. Indeed, I cannot doubt but that on this plan, and with these advantages, they might have found themselves always able to pay at least \mathscr{E}_{200} to each nominee ${ }^{x}$.

I have already mentioned one instance in which the plan of this Society is not equit-
${ }^{4}$ A surplus from a thousand members of only five shillings per annum, duly improved at 4 per cent. would, in 41 years, produce a capital of $\mathbb{E}_{2}^{2}, 000$.

[^61]able. Another instance of this is, their requiring the same payments from all persons under 45, without regarding the differences of their ages; whereas, the annual payments of a person admitted at 45, ought

- to be double the annual payment of a person admitted at 12 .

Further. The plan of this Society is so narrow, as to confine its usefulness too much. It can be of no service to any person whose age exceeds 45 . It is, likewise, far from being properly adapted to the circumstances of persons, who want to make assurances on their lives, for only short terms of years.-

- Thus; the true value of the assurance of $£_{150}$ for 10 years, on the life of a person whose age is 30 , is by Quest. XIV. (interest being at 3 per cent.) $£ 2 \ldots 135$. in annual payments (for 10 years), to begin at the end of the first year; and subject to failure when the life fails. But such an assurance could not be made, in this Society, without an annual payment of $£ 5$.-Neither is the plan of this Society at all adapted to the circumstances of persons, who want to make assurances on particular survivorships.-For example: A person possessed of an estate, or salary, which must be lost with his life, has a person dependent upon him, for whom he desires to secure a sum of money, payable at his death. But he desires this only as a provision against the danger of his dying first.
first, and leaving a wife, or a parent, without support. In these circumstances, he enters himself into this Society; and by an annual payment of $\mathfrak{E} 5$ entitles his nominee to $£_{150}$. In a few years, perhaps, his nominee happens to die; and, having then lost the benefit he had in view, he determines to forfeit his former payments, and to withdraw from the Society. In this way probably, this Society must have gained some advantages. But the right method would have been to have taken from such a person the true value of the sum assured, " on the " supposition of non-payment, provided he " should survive." In this way he would have chosen to contract with the Society; and had he done this, he would have paid for the assurance, (supposing interest at 3 per cent. his age 30, the age of his nominee 30 , and the probabilities of life as in the 5 th, 8th, and 17 th Tables) $\mathscr{E}^{2} \ldots 8 \mathrm{~s}$. y in annual payments to begin immediately, and to be continued during the joint continuance of his own life, and the life of his nominee.

[^62]Further

Furtber Account of the Anicable Corporation.

THE affairs of this Corporation have lately taken a very favourable turn. The dividends, from the annual contributions of $\notin 5$ for each number, which for eight years, ended in 1769, had not been $£_{150}$ on each claim, have, for eight years ended at 1779, been, nearly $£^{200}{ }^{2}$.-The subsisting shares have increased from 1120, (their number in 1769) to 1990 (their full complement nearly) in 1780; and in the same time the stock of the Suciety has been in-1 creased from $\notin 33,300$ to $\notin 51,300$ in the 3 per cent. annuities; in consequence of which it finds itself now possest, after discharging all expences, of a clear surplus of about $£_{1,350 \text { per ann.--In } \text {. In }}$ these circumstances a proposal has been made to the Society to discontinue the increase of its stock, in order to make use of the surplus in increasing the dividends on claims. This being an inviting proposal, it is not surprising that the Society in general has shewn itself

[^63]disposed to accede to it. - The imprudence however of such a step will be evident from the following observations._ It should be considered, that the reason of the late increase of the annual dividends, has been the late increase of the Society by the influx of young members. So great has been this increase, that the Society has been nearly doubled in twelve years, and tripled in the last 30 years.—It could not, therefore, but happen that the number of deaths should become much less in proportion to the numbex of members, than they were before the increase. The Society being now full, and admitting of no farther increase, the collective age of the members, and, together with it, the annual deaths, will be for some time increasing, till that part of the Society. which consists of the late additions ' come to die off twice as fast as they did at first. During

[^64]During this interval the dividends will be growing less and less, till at last they will fall below the dividend which the Society has guarantied (or $\notin 150$), and produce a necessity of entering into the capital in order to make it up. And the reduction of the capital once begun will proceed faster and faster till it is all spent; and when spent, the Socicty will be thrown back into the state it was in before its increase, when frequently it could not afford a dividend of $\oint 100$ on each number.-Such will be the certain tfiect of adopting the measure 1 have mentioned. It is, therefore, imprudent in the highest degree; and I will add, that the injustice of it is equal to its imprudence; for it is benefiting the older part of the present members, at the expence of the younger members, and all present members at the expence of future ones. For a few years the dividends will probably, with the help of the addition of the annual profits, exceed ± 200, which will be paid chiefly among the claimants derived from the older mem-
by such assertions. According to all observations on human mortality, a body of men at 65 or 70 will die off 1 wice as fast as a body of men at 40 ; and a body of men at 75 or 80 will die off four or five times as fast as a body of men at 50 . The human frame, after the age of 12 or 15 , is continually wearing out and becoming less capable of combating the causes of mortality; but more or less slowly according to the degrees of firmness with which it was built, and the favourableness or unfavour. ableness of the situations into which it happens to fall.
bers. But after a course of years they will sink to little more than half; and at that period the Society will consist of the younger part of the present members, and such nero members as shall be hereafter admitted to fill up vacarcies, who will therefore be great losers, because their predecessors, by neglecting to improve the estate, made themselves too great gainers.

In order to set this in a clearer light, I would desire it may be considered that, according to the mean probabilities of the duration of life, a body of people at the age of 36 , will, one with another, live 25 years. It must, therefore, be expected that a treentyfifth part will die annually of a Society which has subsisted any considerable time, and the members of which are admitted at this mean age. Supposing, therefore, 36 the mean age of admission in the Amicable Corporation, the time must come when (if kept ${ }^{\text {b }}$ up to its full complement) a 25 th part of the members will die annually, or when 80 numbers (the 25th of 2000) will drop, and produce 80 claims annually.-The whole in. come of the Society (consisting of $£_{10,000}$ per ann. from, the charter contributions, and $\mathscr{E}_{1,350}$ per annum, profits), when divided equally among 80 claimants, will give $£_{142}$ for each claim. The dividend guarantied in

[^65]17\%0 being \mathscr{E}_{150} there will be a deficiency of $£ 8$ in each claim, or of $\mathscr{E} 640$ in the total of claims; which sum procured by selling stock in one year will leave a necessity of selling more the next year, and still more the following, and so on through every successive year, till the whole stock falls rapidly to nothing. - It is proper to observe here, that this deficiency of $\neq 640$ per ann. is a maximum to which the deficiencies of many preceding years had increased gradually ; and that, therefore, the whole stock may be consumed even before the period arrives, when the greatest deficiencies will happen.

All this reasoning supposes that no more than a 25 th part of the members of this Corporation will hereafter come to die annually; or that they are admitted at the mean age of 36 , and live after admission, one with an-. other, 25 years.-But these are probably too favourable suppositions. Perhaps, the mean age at which members are admitted (and particularly the purchasers of two or three numbers) may be above 40; and perhaps also, on account of the difficulty there must be in excluding from such instilutions all bad lives, the duration of the lives of the members may be somewhat less than is common among persons at the same ages. Should this be true, their dutation of life after admission will not exceed 22 years. A 22d part will hereafter die annually. The claims from 2000 numbers will be 91 ; and the dividend
vidend on each claim, with the addition of the savings, will be only $£_{124 \ldots 12 s \text {. which }}$ will produce a deficiency of $£ 2,311$ per ann.

If I may judge from what has hitherto happened in the Society, even these last suppositions favour it too much; for, I find, that before the increase which begun in 1750, a nineteenth part of the existing numbers dropped annually, which made the dividends then fall frequently below $£_{100}$. This, however, must have been owing to the admission, for some years after the establishment of the Society, of members at too advanced ages, and the neglect of proper care to exclude bad lives. Much uncertainty in this instance would be removed,

[^66]and the best guide obtained in conducting the affairs of the Society, by taking an exact account of the mean age at which, for the last ten or twelve years, all members (distinguishing particularly such as have two or three numbers dependent on their lives) have been admitted ; and also of the number of years which all admitted, till within the last 30 years, have lived after admission.

Upon the whole. Till new light is given by such an enquiry as this, I must think that, however prosperous the affairs of the Society seem at present, it cannot prudently act on any other expectation than that a period will come when a 22 d or 23 d d part of its members will die annually, and when, therefore, it will want at least an additional income of $\mathscr{E} 2000$ per ann. to enable it to

[^67]make good its engagements. A greater additional income might be acquired by continuing to lay up all its savings after dividing the charter contributions-But were it to lay up the whole of its income above what may be necessary to divide $\not £_{170}$ on every claim, it might advance its guarantied dividend from \mathscr{E}_{150} to this sum. And this, in my opinion, is the most rational and equitable measure it can adopt.

I know, indeed, that there is a clause in the charter which limits the increase of its estate to \mathscr{E}_{2000} per ann. But this clause shews that the charter was framed with too little foresight ; and it must be repealed, or the consequences will be that danger to the Society and injustice to its future members which I have represented.

The preceding Observations are offered very respectfully to the consideration of this Society: Should any of the members or directors think them worth their attention, I hope they will reflect, that having no interest to serve, I can mean nothing by them but the preservation of the credit and usefulness of the Society ${ }^{\bullet}$.

SECT.

[^68]
S ECT. VII.

Of the Society for Equitable Assurances on Lives and Survivorships.

The Society which is to be subject of this Section, has justly styled itself, "A Society " for Equitable Assurances on Lives and Sur"vivorships." The business of it is carried on at its office, in Cbatbam-Place, near Blackfriars Bridge. It was founded in 1762 ,
increased very rapidly: By the accession of so many new members a sudden addition was made to their annual income, and, in consequence, the dividends on the claims were increased so as to raise them during the first 10 or 15 years from $£_{150}$ to \mathscr{E}^{200}, and in some years even to \mathbb{E}_{300}. But this effect necessarily ceased with the cause which produced it, and the dividends since the year 1787 have sometimes fallen so low as barely to exceed the stipulated sum of \mathscr{E}_{150}. -Nay, in the last year they fell short of this sum, and the Society had recourse to their capital, not merely to supply the deficiency; but even to add \mathfrak{E}_{5} to each share over and above the sum which they had engaged to pay. In some years they have added $£_{15}$; nor do they seem in these additions to be guided by'any one principle of reason or computation. It is at best a very mistaken liberality, and if it were always to be repeated under similar circumstances, though it might perhaps be intended to promote the credit, it would inevitably terminate in the ruin of the Society.

By increasing the number of their shares about 10 years ago from 2000 to 4000 , they produced in like manner as in the year 1770, a temporary increase of the dividends : but the effect in this instance was more tran-: sient, owing, I believe, principally to the new niembers having for the most part consisted of persons between 40
in consequence of lectures recommending such an institution, which had been read by Mr. Simpson, a name that can never be for-
and 50 years of age.-In the admission of these members they raised the contributions upon every number above 2000 from $£_{5}$ to $£^{6} \ldots 4^{\text {s. per annum: }}$ thus, making the amount of the annual payments to depend, not on the age of the subscriber but on his priority in the Society.-It is much to be lamented that they should not have chosen to adopt the improvements proposed in this work, rather than persevere in a course so injurious to their real interest, and often disgraced by regulations so absurd and inequitable. They have indeed lately manifested a disposition to reform their plan, and in consequence of the recommendation of the Directors they have limited the age of admission to 40 instead of 45 -they have also placed all the members on the same footing in regard to their annual payments-restrained for a time the amount of the dividends to $\mathscr{E}_{150-\text { and }}$ in order to encourage young persons to subscribe, they have given those who enter under the age of 35 , the privilege of having six, instead of the usual number of three shares, on their respective lives:-They have also agreed that $\mathscr{E}_{34} 3,300$ of their stock, (amounting in the whole to $£^{6} 6,3 \times 0$ in the three per cents, together with some property in house's) should be preserved as unalienable without the consent of two successive general courts, so that only $£_{3} 0,000$ of their stock shall be appropriated in aid of the annual contributions to make up future deficiencies in the divi-dends.-Had these regulations been proposed, at an earlier period, it is possible that they might have been effectual ; but I have every reason to believe from an investigation of the affairs of this Socicty, that in its present state they are much too feeble and inefficient.-The reform of a plan originally very defective, and rendered still more so by subsequent laws and alterations, is indeed a work of considerable difficuity, and if the members satisfy themselves with the measures they have now adopted, it is certain that they are far from having accomplished such a reform as will secure the Society from the consequences of their former errors.
gotten while there is any mathematical or philosophical knowledge left in the world. Mr. Dodson also, the author of the Mathematical Repository, was active in recommending the plan of this Society, and composed Tables for its use. -It assures any sums or reversionary annuities on any lives, for any number of years as well as for the whole continuance of the lives, at rates settled by particular calculation; and in any manner that may be best adapted to the views of the persons assured. .That is, either by making the assured sums payable certainly at the failure of any given lives, or on condition of survivorship: and also either by taking the price of the assurance in one present payment, or in annual payments during any single or joint lives, or any terms less than the whole continuance of the lives.-In short; the plan of this Society is so. extensive and so important, that I cannot satisfy my own mind, without offering to the gentlemen concerned in the direction of it, the following observations, hoping they will not think them impertinent.

First. They should consider what distress would arise from the failure of such a scheme in any future time; and what dangers there are, which ought to be carefully guarded against in order to secure success. I have already more than once observed, that those persons will be most for flying to these establishments, who have feeble constitutions,

Equitable Assurances on Live'. 177
or are subject to distempers which they know render their lives particularly precarious ; and it is to be feared, that no caution will be sufficient to prevent all danger from hence.

Again. In matters of chance, it is impossible to say, that an unfavourable run of events will not come, which may hurt the best contrived scheme. The calculations only determine probabilities; and, agreeably to these, it may. be depended on, that events will happen on the whole. But at particular periods, and in particular instances, great deviations will often happen; and these deviations, at the commencement of a scheme, must prove either very favourable, or very unfavourable.

But further. The calculations suppose, that all the monies received are put out immediately to accumulate at compound interest. They make no allowance for losses, or for any of the expences attending management. On these accounts, the payments to a Society of this kind, ought to be more than the calculations will warrant, and the interest of money ought to be reckoned low. Mr. Dodson, I find, has paid due attention to all this, by reckoning interest, in his calculations for this Society, at 3 per cent. and taking the Jowest of all the known probabilities of life, or those deduced from the
vol. I.
N
London

London bills of mortality ${ }^{\text {s }}$. Theme ia, be sides, a liberty provided of making a call on all the members, in case of any particular emergency. It is, therefore, highly probable, that this Society must be secure. The last expedient, however, mould be a very disagreeable one, should there be ever any accasion for having recourse to it; and, in order to guard still more effectually against danger, it would not, I think, be amiss to charge a profit of 6 per cent. on all the payments. Should the consequence of this prove, that in some future period the Society. shall find itself possessed of too large a capital, the harm will be trifling, and future members will reap the advantage. But this leads me to repeat an observation of particu* lar consequence.

As this Society is guided, in every instance;

[^69]by strict calculation, it is not to be expected that it can meet with any difficulties for many years; because not till the end of many years after it has acquired its maximum of members, will the maximu of y yarly claimants and annuitants come upen it, Should it, therefore, through inattention to this remark, and the encouragement arising from the possession of a large surplus, be led to check or stop the increase of its stock too soon, the consequences might proye pernicious.

Again. I would observe, that it is of great importance to the safety of such a Society, that its affairs should be under the inspection of able mathematicians. Melancholy experience shews, that none but mathematicians are qualified for forming and conducting schemes of this kind.-In short; dangerous mistakes may sometimes be committed, if the affairs of such a Society are not managed frugally, carefully, and prudently. One instance of this I cannot ayoid mentioning.

A person, who desires to assure a particular sum to be paid at the failure of his life, on condition of the survivorship of another life, may chuse to pay the value in annual contributions during the continuance of his own single life rather than during the continuance of the joint lives, because the annual contributions, in this case, ought to be much less. But 2 Society that would prac: N 2
tise
tise such a method of assurance would hurt itself; for as soon as the life, on whose survivorship the assurance depends, is extindt, the person assured, if then living, would have no longer any benefit in view ; and, therefore, would make his payments with reluctance, and in time, perhaps, entirely withdraw them; the consequence of which would be, that the Society would suffer a loss by being deprived of the just value of the expectation it had granted. The plan of a Society ought always to be such, as that the losses arising from discontinuance of payment, should fall on the purchaser, and never on the Society.

I must not forget to add, that it is necessary that such a Society should be furnished with as complete a set of Tables as possible. This will render the business of the Society much more easy, and also much more capable of being conducted by persons urrskilled in mathematics. It will also contribute much to its safety. For in all cases to which Tables can be extended, there would be no occasion for employing any calculators; and, consequently, a danger would be prevented to which, though it is not nowe, it may bereafter be exposed; I mean, the danger of happening to trust unskilful or careless cal-culators.-It is indeed furnished with Tables, by which a great part of its basiness is transacted; but there are some important Tables which it wants;' and with which it should
be supplied; and these when composed, together with all its other Tables, should be subject to the revisal and examination of the best judges, and afterwards published; with a minute account of the principles assumed and the method taken in composing them. Such a publication would be a valuable addition to this part of science; and it would also be the means of increasing and establishing the credit of the Society.

In Questions 4th, 6th, 10th, 11 th, 14th, 15th, and 16th, I have, with a particular view to this Society, given rules by which may be formed every Table it can want, for shewing the values of assurances on the wbole duration, or any terms, of any one or two lives; and nothing but care and atten. tion can be necessary to enable any good arithmetician to calculate from them.

Further Account of the Equitable Society, with an Account of an Institution for the Sale of Life-Annuities at Hamburgh.
I HAVE just referred to the questions in the first Chapter of this Treatise, for the rules by which the values of assurances on any one life, or any two lives, may be computed. Since the last publication of this Treatise, investigations of this kind have been carried much farther, and this subject, as far as it respects assurances on any number of lives not exceeding tbree, has been nearly exhausted by Mr. Morgan, the actum
ary of this Society, in the Treatise referred to at the end of the Fitst Chapter.-In this work, Mr. Morgin has given a distinct account of the state of this Society as he had made it out to January 1877; and to that account, and to the Obseryations addressed to the Society in the Introduction to Mr . Morgan's Treatise, I must refer for the fullest information that can be given of the plan and progressive increase of the Society, and of the methods employed to keep in constant view the state of its actounts. I shall here only add, that its increase has been going on ever since with rapidity; that, in the last five years (or since 1776), its annual income has been nearly doubled, and its capital (consisting now in part of land securities) more than tripled; that the rate of mortality among the persons assured has continued much below that in the Tables by which it has hitherto made its calculations; ${ }^{8}$ and that, upon

[^70]```

\section*{WILSON ANNEX AISLE 69}```

[^0]: VOL.I.
 a
 enter

[^1]: - The Solutions of the 15 th and 16 ch questions are true, and the rules deduced from them are sufficiently correct for any useful purpose.-See Note (H) Vol, I.

[^2]: - Note page 149.

[^3]: 〔 Note page 151, Vol. I.

[^4]: = In the present edition, the third Chapter. M.
 ${ }^{\mathrm{b}}$ Now the second Essay in the second Volume. M. particularly,

[^5]: c Much has been said also about a mistake into which it is supposed I have fallen in estimating the quantity of gold coin in the kingdom. The truth, in this instance, is briefly this.-The third proclamation for calling in the gold coin brought in near double the sum that was expected. In consequence of this, an estimate which I had published in the First Tract on Civil Liberty, proved short of the truth about three millions and a half; and it appears now, that, exclusive of two millions purchased by the bank and melted into bars, the gold coin of the kingdom was (in 1773) about sixteen millions, instead of twelve millions and a half, as I had reckoned it. And this is the account I have given in the last edition, p.74, of the Tract just mentioned, except that being then not informed of the coin purchased by the bank, I have not mentioned it.

[^6]: * See page 33^{8} in this Volume.

[^7]: ${ }^{\mathrm{i}}$ The reason of this difference between the London and other Tables, will be given at the end of the second Essay.
 the

[^8]: ' It will be observed hereafter, that this observation has been found to be true in fact.

[^9]: *. In note (A), at the end of the 2d Volume, a rule is given by which the numbers alive at the end of any parficular number of years may be very easily determined.

[^10]: n These payments by the Northampton Table are \& 9.19 and 事 11.82 respectively:
 'M.
 a. The yalue of two joint, hives of 30 , taken from Table XII. Vol. II, is 9,6 . This subtracted from the value of. the life in expectation, ' or from 13.1 , by 'Table XI. gives 3.5 , the number of years purchase which an annuity for a life of 30 years of age, after another life of the same age, is worthr: This remainder, multiplied by 30 , gives \mathscr{E}_{105}, the value in a single payment, supposing the reversionary annuity to be $\mathfrak{E} 30$. And \mathscr{E}_{10} 'g divided by $9: 6$, gives $\mathscr{E}_{10.9 \text {, the :value of the same annuity in }}$ annual payments, during the joint continuance of the two lives, according to the London observations.- By similar operations all the other values above given have been found.

[^11]: ${ }^{9}$ These three values by the Northampton Table are $\mathscr{E}_{49.75}, \mathscr{E}_{44.65}$ and $\mathscr{E}_{53.05}$.

[^12]: . The probability that a given life shall continue any number of years, or reach a given age, is (as is well known)

[^13]: : It never happens that the annual payments are made in this manner-The usual, indeed the invariable method is, to advance the first payment immediately, and the remaining ones at the beginning of each of the following years; so that the number of payments shall be equal to the number of years.-The single payment therefore ought to be divided by the value of the life for one year. less than the given term increased by unity; hence $\neq 222$ in the present case, instead of being divided by $£ 10.53$, should be divided by $\neq 10.18$, (or the value of the lite for 14 years increased by unity, and consequently the annual payment will be $\boldsymbol{\xi}^{31} 21.8$, which agrees nearly with the same payment found by the Northaimpton Table. M.

[^14]: ' If the payments are confined to the-beginning of each year, (See note, page 20) 5 guineas should be multiplied into 10.18; and the answer will then be 16855 .
 M. the

[^15]: - According to the Northampton Table $\mathfrak{F} 8.34 ; \mathfrak{E 8} .91$; た944.

[^16]: 教4.

[^17]: - That is, the title to the annuity is to commence at the end of 11 years, and the first payment to be made a year afterwards, in case the life in expectation should continue so long, and the other fail. But if both lives should continue the given term, the first payment is always to be made at the end of the year, in which the former life shall happen to survive the latter. See Quest. VI.
 ${ }^{f}$ See the Note, p. 24.

[^18]: * These values by the Northampton Table are $£_{47.8}$ and $\mathfrak{E}^{2} .83$, and $£_{51.28}$ and $£_{3.26 .}$

[^19]: Vid. Appendix, note (E) at the end of this. Volume. *6 or

[^20]: - I must beg leave to refer to note (F) in the Appendix. for an explanation of what I mean by the mean ages of married men and women, and also for a confirmation of the answer I have given to this Question.

[^21]: - An annuity for ever, the first payment of which is to be made immediately, is worth 26 years purchase, interest being at 4 per cent. $\mathscr{E}_{14.2}$ therefore is equivalent in value to 0.55 or 115 . per annum, for ever. Add this to $\mathfrak{E} 6.64$, and it will appear, that $\mathfrak{E} 7.19$ per annum, beginning immediately, is the answer to this Question, supposing the value of the finet o be provided for in the perpetual annual payments.

[^22]: ${ }^{2}$ Or, supposing the value of $£_{9471 \text { (the fine) pro- }}$ vided for in the annual payments, it ought to receive every year, at the beginning of the year, a contribution from each member of $\mathfrak{E}_{4} \cdot 74$.

[^23]: $=$ The probability taken from the Table, that a person, aged 30 , shall live 10 years, is $\frac{44}{5} \frac{4}{3} \frac{5}{2}$. That a person, aged 40 , shall live 10 years; is $\frac{3.46}{4+5}$. That they shall both live 10 years, is $\frac{34}{4} \frac{6}{5}$, multiplied by $\frac{44}{5} \frac{5}{3}$, or $\frac{34}{5} \frac{6}{7}$. That they shall not both live 10 years, or that one or other of them shall die in this time, is $\frac{34}{5} \frac{6}{3} T$, subtracted from unityt or $\frac{18}{5} \frac{8}{2}$. . See note p. 24 .

[^24]: - Such tables are given in the present edition of this treatise; and therofore this yemark is now less necessary than: it was, See the tables of the values of single and joint lives in the next volume, deduced from the register of mortality at Northampton, \&\&c:

[^25]: f This table gives the expectations only, but it should be remembered, that twice the expectation is always the complement of a life. See note; p.'39.

[^26]: - In this society a member who lived but one year, was entitled to no more than an annuity of \neq for his widow; if he lived two years, to \mathscr{E}_{15}; if he lived three years, to, \mathscr{E}_{20}; four years, \mathfrak{E}_{25}; seven yeare, \mathscr{E}_{3}; t ten years ${ }_{n}$ E35; thirteen years, ${ }^{2} 4 a$.

[^27]: - The same annual payment will; on the same supposis. tions, entitle to $\mathcal{E} 14$ if a member lives a year, and \mathcal{F}_{18} if he lives three years.

[^28]: - This is the exact truth according to Mr. Do Maive's, hypothesis, and the Norwich Table. But according to Dr. Halley's and the. Northampton Table, a man 40 years of age has an even chance of tiving no more ihan 22. yeafs, and of joint continuance with a wife of the same age, 13 years. Forty must be more than the mean age of: the members of the society at admission, and on this ac-count the number of annaitants of \mathbb{E}^{40} must be proportionably greater: The mean age, therefore; has been taken yery moderately.

[^29]: T Every question of this kind may be easily solved, bx, Table IV, in the next volume, which shews, that $100{ }^{\circ}$ Per annium will, in 25 years, increase to 2666 per an"num, , and, therefore, \mathscr{E}_{1050} per annum to $\mathfrak{E} 2800$ per. ainum.

[^30]: - Rvery calculation of this kind is easily made by thè rule in note (A) at the end'of this volurie.-I have put the number living together at the end of 20 years at 62 ; zot only that the reader may be better satisfied that I have kept low eñough, but also to make an allowance for such widows as will be left' by those members who die within a year after adrrission; ard who, therefore, accord-: ing to these schemes, will be entitled to no annuities. This allowance is too large. For, after the first year of the 'schethe, it'will not happen atove once in' 4 or 5 years; thrat: the death of' a: member will be so circumstanced, supposing the probabilty that a man at 40 will live a year, to be, as all but the London Tables make it, 50 : to 1 .

[^31]: ${ }^{\text {t }}$ What has been before demonstrated in Question III. should be here recollected, that the number of annuitants on such a society as this, must go on to increase for more than 100 years after acquiring its greatest number of members.

 The Laudable Society, I am informed, took its rise from a calculation contained in a pamphlet entitled, The Possibility and Probability of a Scheme intended for the Benefit of Widows being able to support itself. The scheme here referred to, is the same with that which this Society vol. I. G has

[^32]: ${ }^{2}$ Care should be taken in these societies, not to judge of the proportion, of widuws that will marry, from the proportion that may happen to marry during their first years. For most of the widows that will be left at first will be young; whereas the greater part will not be young when they cominence widowhood, after a society has subsisted 50 or 40 years; and, therefore, though one in three or four should marry at first, it will not be reasonable to expect, that half so many should marry after We affairs of the society become stationary.

[^33]: ${ }^{2}$ The number of married ministers and professors, for 17 years, from 1750 to 1766 , was at a medium 667. And from the enquiries that have been made, it appears, that from this whole body near 400 widows constantly living are derived. The medium of widows left annually has, for the last 36 years, been $19{ }_{\mathrm{r}}^{\mathrm{T}} \mathrm{f}$; and, for 10 years, ending in the year 1767 , but nine of these had married.-Of the annuitants likewise (about 160 in number) on the fund established among the Dissenters in London, for relieving the widows of indigent ministers, it is found that few ever marry. See the 2d Section of this Chapter. See likewise the latter end of the 2d Essay; and note (A) at the end of this volume.-In the Laudable" Society during 19 years from 1761 , the number of widows that came upon the Society was 167 ; and of these only 13 had married at Lady-day 1780 . Fourteen had died.
 ${ }^{\text {b }}$ Partly, as cbseryed in page 8, on account of the greater mortality of males, but chiefly on account of the excess of age on the man's side.-The Laudable Society, for several years after its institution, paid no regard to this excess of age'; and the allowance required on this account by the London Annuity Society was so tritling as to deserve no notice.

 In March 1780,167 husbands had died in the Laudable Society, and only 138 wives.

[^34]: - The value of five guineas per annum (first payment made immediately) for in years, subject to failure should a life now 24 fail; and, after II years, for the joint lives of two persons both 35, is, by the Table of London Ob. servations, £69.3-By Dr. Halley's Table, £ 76.44 .-The present value of $\neq 35$ per annum for life to the widow of a person now 24, should he live in years, and marry a woman of the same age with himself at the end of that time; and also of \mathfrak{E}_{6} more, or \mathfrak{E}_{41} per annum in all, should he live after marriage four years; is, by the Table of London Dóservations, $£^{〔} 69.36$.-By Dr. Halley's Table, $£_{7} 6.03$.

[^35]: - In 1780 fourteen more widows came upon the Soeiety.

[^36]: ${ }^{\text {f }}$ The annuitants (should the number of members continue what it is) cannot increase to much less than double their number last year.

[^37]: 8 The mean age of the widows now on the Society is not probably more than 42 or 43 . The value of annuities payable half-yearly during the lives of women at this age, is not really so little as 13 years purchase, reckoning interest at 4 per cent. Supposing therefore the Society to break up some time or other before the end of this year (1781), and the number of widows then upon it 154 , the value of their annuities, at $\mathscr{E}_{35} 0$ each, will be $\mathfrak{E}^{5} 53,900$, of which their stock, at its present price, will not pay so much as E̊88,000.
 mistakes,

[^38]: k There is one among the Dissenting Ministers in the counties of Chester and Lancaster; and another among the Dissenting Ministers in Cumberland, Northumberland,

 Westimorland,

[^39]: - See page 73.

[^40]: - I owe this information to the kind and very obliging candour of the reverend and ingenious Dr. Webster, of Édinburgh.
 ${ }^{9}$ More particular notice will be taken of this at the conclusion of the second Essay.

[^41]: ${ }^{7}$ See a note at the conclusion of the second Essay; and also note F, at the end of this volume. The maximum of widows (supposed 395) divided by the number left annually (or $19{ }^{\frac{1}{1}}$) gives $20 \frac{3}{5}$, the expectation of widowhood. See page 89, and Note (A) at the end of this volume.

[^42]: - This scheme has shared the fate of Mr. Gandy's. M.

[^43]: 'The value, by Table XVII. in the next volume, reckoning interest at $3 \frac{1}{2}$ per cent. of an annuity for eleven years, on a life aged 40 , the first payment to be made at the end of a year, is by Quest. VI. Chap. I. 7.895.-The annuity, therefore, being $\mathscr{E}^{2} 5$, its value is $¥^{\neq 197}$, to which \mathfrak{E}_{50}, (the first payment) added makes ギ 247 ; 2 which is also, by Quest. X. the value, reckoning the same interest, of $£_{500}$ payable at the death of a person, aged 40.-The same contributions, supposing money improved at 5 per cent. would entitle a nominee to $\mathfrak{Z}^{\prime} 600$.

[^44]: - Out of a body of new members derived from two admitted every year at 40 for 11 years, it may be expected that two will die before the end of the 1 1th year.

[^45]: ${ }^{y}$ See another advantage mentioned under Question VIII.
 " ${ }^{2} 10$

[^46]: ${ }^{2}$ Supposing 16 years the only term, the annuity $\nsupseteq 20$, and interest at 4 per cent. the proper payments will be nearly, in the case of equal ages and single payments, $\mathfrak{E}_{4} 6$

[^47]: - This defect will, I hope, be in some measure removed by the Observations and Tables in the next volume.

 VOL. I.
 K
 strated

[^48]: - See p. 90, 91. Sect. I.
 - Thus; was the Londom Annuity Society to make. theis

[^49]: ,. SSix German rixdollars make about a guinea.

[^50]: - It is obvious that the values in this case for every annuity of \mathscr{E}_{1} are, in a single payment, the excess of the value of the life of the child for as many years as his age is less than 25, above the value of the joint lives for the same time found by the Scholium to Quest. VI.; and; in annual payments beginining immediately, the Quotient arising from dividing the single payment by the value just mentioned of the joint lives, with unity added.

[^51]: Digtied dy Google

[^52]: f The first members of this Society have paid no ad. mission-money; and are now expecting $£_{44}$ per annum for contributions which do not entitle them, one with another, to $£_{10}$ per annum.

[^53]: * The account here given of the terms on which a person whose age is 40 , is admitted into these societies, I have taken from their printed Tables as they stood at the end of the year 1770.-In the younger ages, the deficiencies are greater.

[^54]: vOL. 1 .

[^55]: ${ }^{\text {h }}$ If: any person wants more information than 1 have given him concerning these societies, he should consult a work of great merit, published since the second edition of this treatise, and entitled, Calculations deduced ' from first Principles, in the most familiar, Manner, by plain Arithmetic, for the Use of the Societies instituted for the Benefit of old Age; intended as an. Introduction to the Study of the Doctrine of Annuities. By Mr. Dale, a Member of one of the Societies. In this Treatise there is not only a very ample account given of the insufficiency and iniquity of the schemes of these Societies, but the principles on which the values of all annuities on single lives are determined, and the method of calculating them, are explained with the greatest clearness.

[^56]: - . I know not what the rate of mortality in the Society has been since this year.

[^57]: - See additional Observations on Civil'Liberty, page 135.
 ${ }^{\mathrm{P}}$ This prediction has bcen abundantly verified; for, after having gradually reduced their annuitics to $¥ 8$, it appeared

[^58]: r Such payments, it has been shewn, Question VIII. p. 29, are better than any half-yearly or quarterly payments, and at the same time they save some trouble.

[^59]: - This period will (by Question III.) be longer if the Society is any time in filling, and admits members at younger ages than 36 . It will, for instance, be 84 years, if the Society is ten years in filling, and admits at all ages between 12 and 45.

 YOL. I.
 M
 cess,

[^60]: ${ }^{t}$ The reverse of this will take place, if such a Society begins with admitting all at all ages, and afterwards changes its plan, and limits the age of admission. In this case, the number of yearly deaths will be greatest at first, and the dividends smallest. In consequence of altering its plan, the yearly deaths will lessen gradually, and the dividend's rise; but in time both would return again to their original state.

 The following facts incline me to suspect, that this retnark may be applicable to the Amicable Corporation.

 First. In their original charter, as it is given in their printed abstracts, there is no limitation of age mentioned ; but 3^{1} years afterwards, 1 find a bye-law made against admitting any person who should be above the age of 45 , or under 12.-Secondly. In their printed advertisements in 1770 , it is said, that in 59 years they had paid, among ${ }_{3}, 643$ claimants, $£_{37} 8,184$, from whence it follows, that though the average of their dividends, for 17 years before 1773, has been \mathfrak{E}_{154} the average, for 59 years, has becn only $\mathfrak{E 1 O 4}^{10}$.

[^61]: ${ }^{x}$ It \cdot should be remembered, that all this was said in the former editions, on the supposition that proper care has been taken to keep out unhealthy persons; that the ages of admission have never exceeded 45 ; and that the probabilities of life among the members of this Society, are the same with those in the 5 th, 8th, and 17 th Tables, in the next volume. But I have lately found the truth to be, agrecably to the suspicion expressed in the last note but one, that for many years after the first in. stitution of the Society, members were admitted at all ages.

[^62]: y The value of $£ 150$ payable at the death of a person, aged 30 , provided he survives another person of the same age, is, by Question XI. Chap. I. $\mathfrak{E}^{\mathscr{E}} 45.65$; and this value divided by 13.43 (the value increased by unity, of two joint lives both 3) , gives $\mathfrak{E}_{3} \cdot 4$, or $\mathfrak{E} 3 \ldots .8$ s. -The value of the same, reversion, according to the probabilities of life in London, is, $\mathscr{F}_{49.19}$, in one payment; and $\mathfrak{E}_{4 \cdot 16}$, in annual payments, during the joint lives, the first payment to be made immediately.

[^63]: ${ }^{2}$ This dividend for 1780 , was \mathfrak{Z}^{192}... $65 . . .1$ d. $\frac{3}{4}$; but made` up to \mathcal{E}_{193} in consequence of a discretionary power given the directors to take what sums they think reasonable from the savings to increase the dividends.
 disposed

[^64]: ${ }^{2}$ An addition of near 400 to the subsisting numbers or shares of the Society was made from 1749 to 1768 ; and of above 900 more, from 1769 to 1779.-Even that part of the increase of the Socicty which consists of members to whom the first of these additions has been owing, is at present far from dying off so fast as it will. In truth, 50 or 60 years at least must elapse before this can happen. See Question III. Chap. I. I am told it has been asserted by some belonging to the Society, that a person about 40 or 45 is not less likely to die than a person 20 or z° years older, from whence, 1 suppose it is inferred, that the deaths now in the Society may be as numerous as they will ever be. It would be doing an injury to the Society to suppose that it can be influenced

[^65]: b Should the Society decline, more than a $25^{\text {th }}$ part will die annually, and the period when this will happen will arrive sooner.

[^66]: c This increase seems to have been owing to the limitation of age in 1737. In a few years after this, the greatest part of the members who had been admitted at advanced ages having died off, and the Society consisting chiefly of younger members admitted in their room; the dividends rose, which occasioned a quick increase of young members, raised the dividends still higter, till, in 1757, the Society thought itself capable of guarantying a dividend of $£_{125}$; and, in 1770, a dividend of $£_{150}$. These augmentations contributed yet more to increase the Society, and consequently the dividends. It became, therefore, soon full, and now finds itself in the prosperous state described at the beginning of these Observations; a state, which the Society may render really and permanently prosperous, if they are properly attentive to its causes, and will avail themselves of the opportunity it gives them to rectify the faults in their origimal plan by increasing their guarantied dividend in the manner I shallpresently propose, instead of discontinuing. the increase of their capital.

[^67]: ${ }^{d}$ If Mr. Brand, the clerk of this Society, is right, the members of it are uncommonly short-lived; for, according to an account which he has given of the duration of the lives of 3,826 persons who have been admitted into it, and on whose deaths claims have been paid; they do not, one with another, live after admission 16 years. See Smart's Tables republished by Mr. Brand, p. 189. .See Jikewise his Treatise on Assurances and Annuities, p. 68.

 This, were it true, would be very threatening to the Society. But Mr. Brand, in other parts of the little that is his own in these Treatises, has erred so palpably, and shewn himself so wonderfully ignorant, that, however possessed in this instance of the means of information, he deserves no credit.-The truth is, in the present case, that he has included in his account such members as have been admitted and have died lately; and this must necessarily lead to a wrong conclusion concerning the duration of the lives of the members taken at large.

[^68]: - It does not appear that any attention has been paid to the admonitions and advice which were given in this Section.-When the Society stipulated in 1770 that the claims should never be less on each share than $\mathscr{E} 150$, the mumber of subscribers, as might naturally be expected, increased

[^69]: "It ought, however, to be remembered here, that in selling life-annuities to commence either immediately, or after given terms; and also in some other, cases, the values come out less in consequence of lower probabilities of life. Would it in such instances be taking an unfary advantage, to estimate the values by Tghles which give the highest rather than the lowest values? Thus; was the Society to sell £20 per annum for life, to a person now 30, after 50 , the value according to Dr. Haltey's Table, would, reckoning interest at 3 per cent. be $\mathfrak{E j} 90$ in a single payment; but according to the London Table, the value would be only \mathscr{E}_{70}.

 But in reality the value, even by Dr. Halley's Table, is less than the Society, in such a case, ought to take, for the reason mentioned in page 157 .

[^70]: 8 Until the time' nearly in which this account was. written the Society had computed all their premiums from the London Table of Observations, and it appeared from the experience of twelye years, (or from 1768 ta 1780) that the decrements of life among their members had been

 upon the whole, it appears at present to possess such a surplus of income and stock as places it (if no mismanagement takes place) above danger, except from events the - most extraordinary.

 In these circumstances, the Society, not willing to raise an exorbitant capital, or to take unreasomable profits, came to a resolution at the beginning of the last year, or 1781, to make such abatements in its demands as its present circumstances render safe, and to settle such new arrangements in its business as may contribute, to make it as great a benefit as possible to the public.

 In the preceding Section, but more particularly in the Introduction to Mr. Morgan's Treatise, I have expressed my wishes that the Society would order new Tables to be calculated from Observations more adapted

 In consequence they determined to compute the premiums in future from a table which should give the probabilities of life higher than that which they had hitherto used; and for this purpose they adopted one which had been just formed by Dr. Price from vety accurate observations made in the town of Northampton. Compared with the decrements of life in that table from the year 1768 to the year 1800 , the decrements of life inthe Society appear to have been from the age of

 > 10 to 20 in the ratio of 1 to 2
 > 20 to 30^{1} to 2
 > 30 to 40 3 to 5
 > 40 to $50 \ldots3$ to 5
 > 50 to 60 5 to 7

 60 to $80 \ldots \ldots4$ to 5 or at all ages
 together in the ratio of two to three. M,
 to the general state of mortality among mankind than those given by the London bills of mortality.-I I can now inform the public, that such an order has been given and lately carried into execution.-These new Tables are,

 First. A Table exhibiting the values of single lives for their whole duration.

 Secondly. A Table of the values of single lives for any terms of years not exceeding ten.

 Thirdly. A Table of the values in single and annual payments, of assurances on single lives for terms, and for their whole. duration.
 Fourthly. A Table of the values of two joint lives for all.ages.

 Fifthly. A Table of the values, in single and annual payments, of assurances of gross sums, and life annuities payable on the survivorship of one life beyond another.The most material parts of these Tables will be found among the other Tables in the next volume. 'They have been calculated by Mr. Morgan with incredible care and industry; and are correct and complete to a degree never before attempted in any Tables of this kind. They are to form the basis of the future business of the Society, and must conduce much to its growing credit and usefulness.

 The second, third, and fifth Tables, have been calculated by the rules in Chap. 1st of this
 this Treatise, Question 6th, 10th, 11th, and 14th. And the other Tables, or the 1st and 4th just mentioned, in the method described by Mr. Morgan in the 2d Section of the second Chapter of his Treatise on the Doctrine of Annuities and Assurances; a method which, at the same time that it lessens the labour of these calculations, prevents the possibility of falling into any mistakes ${ }^{\boldsymbol{h}}$.

 They are all founded on a Table of the probabilities of the duration of human life at Northampton, which will be inserted among the other Tables in the second volume of this work. This Table made a part of all the former editions of this work; but it is, in the present edition much improved, and gives, I believe, more correctly than any other, the mean probabilities of the duration of human life; and, therefore, as I shall observe again hereafter, seems to be more proper than any other for general use.

 I had, in the Introduction to Mr. Morgan's Treatise, recommended to the Society the observations on human mortality at Cbester; and I had procured a copy of them from Dr. Haygarth, the ingenious founder of them. But the directors of the Society have judged yery rightly, that they carry the probabilities

 of life too high for their business.-These Observations, however, are not on this account less important. I have been enabled by them to make the Nortbampton Table of Observations more complete; and Tables of the decrements and expectations of lives, deduced from them, for both sexes, will be given in the next volume.

 The interest of money in calculating the new Tables of the Society has been reckoned, as it was in the old Tables, at 3 per cent. This gives the Society (more especially at present when money may be improved at near double this interest) a very great advantage. It likewise possesses the two fotlowing advantages.

 First. The interest of a large and fast increasing capital, the greatest part of. which is a sURPLUS over and above all that is necessary to enable it to make good its engagements.

 Secondly. The profits arising from higher probabilities of living among the members of the Society than are exhibited, even in the new Table of Observations, by which its demands are for the future to be governed. This Table differs but little from the Breslaw or Dr. Halley's Table of Observations, which, as may be seen in the Note, p. 182, gives probabilities of living near a third lower than those which have hitherto taken place in the Society.

 I believe

 ## the Equitable Society, \&c. - 88

 I believe the Society might now safely trust itself to the security arising from these advantages, and take the payments for assurances in strict conformity to its new Tables, without any charge upon them; and the consequence of this would be, that these payments, which four years ago were reduced a tenth, will be further reduced about troo tentht, or in the whole about 30 per cent ${ }^{\text {i }}$.,

 But as it has been the custom of the Society (in conformity to the recommendation in p. 178) to make an addition of 6 per cent. to all the payments required by the old Tables, it may, I think, be excused, if, for the sake of greater safety and to provide better for the expences of management, it should make an addition of 3 or 4 per cent. to the payments required by the new Tables.

 There still remain a few Tables, which perhaps some time or other the Society mat think proper to furnish itself with.-I will mention the two following.

 First. A Table of the same kind with that mentioned in p. 135, shewing the values of sums payable $a t$ a given age, and of annuities payable till a given age, to a child, should he lose his parent.

 Secondly. A Table containing the values

 of assurances of annuities for the remainder of life after given terms.

 This would inform the public what advantages could be reasonably offered to persons who wish to be purchasers of such annuities; and the avidity with which the deceptions in this way have been encouraged renders such an information particularly proper.-The public, indeed, has been led by these deceptions to entertain such wrong ideas of the terms on which these annuities may be sold, that probably no terms which the Society can afford will appear sufficiently encouraging. There are, however, annuities of this kind which, at the same time that they have the most useful tendency, might possibly invite purchasers.-Suppose, in particular, an annuity of $£_{1}$ to commence at 56 , and to increase at the rate of \mathscr{E}_{1} every year afterwards, (so as to become $£_{15}$ at $70, \not{ }^{25}$ at 80 , and $\not £^{35}$ at 90) was offered for a given sum payable at the age of 30 , with proper abatements for every year that the purchase was made before this age.-Would not such a proposal be likely to engage attention? And might it not be extremely useful, by holding forth an incitement to industry in the beginning of life, and providing a way of laying out small savings to the best advantage? - According to a high valuation the sum in this case would be about twenty guineas; and the proper abatement about
 about twenty-five shillings for every year that a purchaser's age, if not less than 20, falls short of 30 .

 I must not conclude these Observations. on anniuity schemes without taking particular notice of an excellent example in this way, which is given by a general annuity institution lately established at Hamburgh; and to which I have referred at the end of the fourth Section, p. 137.

 Having received, through Mr. Oeder at Oldenburgh, an account of this institution, and finding that the conductors of it wish to extend its advantages beyond the limits of Hamburgh; I embrace with pleasure this opportunity of recommending it, and reciting the following particulars in its plan.

 Persons of all ages who may desire to ina crease their incomes by purchasing annuities for their own single lives, or for the longest of any two lives, may in this institution purchase such annuities.-A person at 50 may receive during his life $7_{\frac{s}{8}}$ per cent. for 2ny sum; at 60 , he may receive $10_{\mathrm{T}}^{2}{ }^{2}$ pid cent.; at 70, 15 per cent.——Persons who depend for a subsistence on the permanency of their capacities for service or labourg may with such savings' as they may be abla to make in their years of vigour, purchase for themselves a competence for old age. ' A person at 40 may with $\mathscr{E} 100$ purchase \mathscr{E}_{18} per ann. for his life after 55 ; or, for a pays
 ment of $17 \% \ldots 6 d$. every half year till he is 60 , he may purchase for his life after that age $£ 6 \ldots 12 s$. per ann.——Young persons whose fortunes do not produce a sufficient income may, by sinking a part of them, pro cure the means of 4 future settlement in life. A boy, for instance, aged 10, may with $\boldsymbol{e}^{10} 100$ purchase an annuity of $\mathfrak{e x}_{8}^{3}$ dependent on his life till he is 25 years of age, when it may be supposed he will beprovided with other means of supporting himself.

 Persons who have friends or relations dependent upon them may purchase for them, cither by a single present payment, or by halfyearly payments, any annuities to commence at the time of their survivorship, should that happea, and to be continued during the semainder of their lives. In the case of wio dows an abatement is made, if the purchaser chuses that the annuity should be paid only' daring widowhood.

 - Parents wishing to provide portions for their children, or sums for putting them out to apprenticeships when grown up to a certain age, may purchace (by either halfyoarly contributions or single payments), such pottions or sums to be paid them at that age, should they live to it.

 The plan of this institution includes in is several other particulars; but I will only. add, that the money received by the con-
 ductors
 ductors of it is lodged, in the chamber of Hamburgh; that the prices or contributions are distinctly specified for every age in a set of Tables which have been published at Hamburgh; and that these Tables have been calculated at an interest of 3 per cent. from same of the best registers of mortality, and (as far as I have examined them) with skill and correctness ${ }^{k}$.

 CHAP.

 ${ }^{*}$ The Equitable Society, since these observations wept written in the year 1.783 , has increased so immensely both in the number and magnitude of its assurances, as to become an institution of the first importance. In the year 1786, after a minute computation of the value of each separate assurance, the addition of $1 \frac{1}{2}$ per ceatt; which had been made to the claims in 1782 for every annual payment prior to that year, was increased to $2 \frac{1}{2}$ per cent. In the years 1791, 1793, and 1795, still farther additions were made, amounting tagether to 4 per cent; so that the claims an all assurances of an earlier date than 1774 were more than doubled, and even those of so late a date as 17^{89} were increased nearly oue half. But although the Society never hazarded an addition withont a thorough conviction of its safety founded on a comparison of the claims with the premiums and on the decrements of life mongg its members in each year, it wisely determined to proceed no further with these additions till the same investigation of its affairs had taken place, which had been finst instituted in 1776, and repeated in 1786.-Accord. ingly, in the year 1800 this work (which from the in. creased number of assurances had become a most arduous and toilsome undertaking) was accomplished, and the result proved so highly favourable that another addition of An per cent. was made to the claims, so that at this time the assurances of 1790 are increased $\mathscr{E}^{6} 6$ per cent. ; those of $1780 \not \equiv 105$ per cent. those of $1770 \notin 190$ per cent. and those of $1762 \mathcal{E}_{2} 58$ per cent. making in the whole a sum which in present value would fall very little

 ## CHAPTER III.

 Of the Method of calculating the Values of Reversions depending on Survivorsbips.
 AlL Questions relating to the values of lives and reversions, are at present of particular importance in this kingdom. Much business is continually transacted in this way; and any considerable errors in the methods
 short of half a million!-It is unnecessary to expatiate on this subject, in order to shew the great benefit which this Society has proved to the public.-Proceeding always as it has hitherto done on the sure ground of computation, it never can incur any material danger.-The many thousands of which it is now composed render the decrements of life almost uniform among its members, and from the experience of more than thirty years those decrements are found to be even one third (a) lower than they are in the Table from which the premiums are computed. Provided therefore the same care is used in excluding bad lives, every addition'to the business of the Society must be an addition to its profits.-The increased number of members, by preventing it from being affected by any particular season of mortality, will also render those profits more uniform and secure; so that the stability of the Society will be strengthened in proportion as its usefulness is extended.

 The only danger to which it is exposed arises from the greatness of its capital. If due regard be not paid to the immense demands which must hereafter come upon it.If on the contrary this capital be considered only as an
 methods of solving such questions, must in time produce very bad consequences.-The design of the following observations is to point out a particular error, into which there is danger of falling, in finding the values of such reversions as depend on survivorships. In doing this, I shall, in order to be as plain as possible, take the following case. "A, " aged 40, expects to come to the possession " of an estate, should he survive B, aged " likewise 40. In these circumstances he " offers, in order to raise a present sum, to " give security for $£_{40}$ per annum, out of " the estate at his death, provided he should " get into possession; that is, provided he
 accumulation of profit, and the members on this supposition' should be tempted to make too frequent additions to the claims, the consequence, though distant, must ultimately be fatal. Hitherto great prudence and discretion have been manifested in the management of this Society. No measure has been adopted which had the least tendency to diminish the capital without a previous investigation; and in order to secure the same prudence and discretion in the future conduct of its members, the Society has lately provided by certain laws, "that no allow" ance to claimants shall ever be made without a previ" ous investigation of its affairs and the concurrence of " four-fifths of its members at three successive General "Courts, and also that such allowance shall in no in" stance exceed two-thirds of the clear surplus stock of " the Society." By these restrictions, as far as human precaution can operate, the danger of intemperate measures is avoided; and there is every reason to hope that an institution, founded on such liberal principles and defended by such wholesome provisions, will not only be cecure, but continue to improve in credit and prosperity.
 "rshould survive B. What is the sum that " ought now to be advanced to him, in " consideration of such security, reckoning " compound interest at 4 per cent?"

 Mr. De Moivre's directions in his Treatise on Annuities, Problems 17 th and 20th, lead us to seek the required sum in this case, -by the following process.

 Find first, the present sum A should receive, for the reversion of \mathscr{E}_{40} per annum for ever after his death ; supposing it not dependent on his surviving B. The present value of such a reversion is "the ${ }^{1}$ value of the " life subtracted from the perpetuity, and " the remainder multiplied by the annual "rent."-The value of the life is, by Mr. De Moivre's Hypothesis, 13.196. This subtracted from 25, the perpetuity, leaves 11.804 ; which, multiplied by 40, gives $£ 472.16$; the value of the supposed estate, after the life of A. But, as Mr. De Moivre observes, the lender having a chance to lose his money, a compensation ought to be made to him for the risk he runs, which is founded on the possibility, that a man of 40 years of age may not survive another person of the same age. This chance is an equal chance; and, therefore, half the preceding sum, or $\mathfrak{£} 236.08$, is the money which should be advanced now on the expectation mentioned.

 This'

 This solution carries a plausible appearance; and most persons will, probably, be ready to pronounce it right; nor will this be at all wonderful, as so great a master of these subjects as Mr. De Moivre, appears to have been misled by it.-Nothing more is necessary to prove it to be fallacious, than proceeding in the same way to solve the following similar Question.
 "A, aged 40, offers to give security for " $£ 40$ per annum, to be entered upon at his " death, provided it should happen before the " death of B, aged likewise 40. What sum " should now be advanced to him for such a © reversion, interest being reckoned at 4 "per cent?"

 In solving this problem, agreeably to the method just described, we are to find the value of $£_{40}$ per annum, to be entered upon certainls at the death of A; and then to multiply this value by the chance that A shall not survive B, or by $\frac{1}{2}$; and in this way the answer comes out the same with that already given.

 Now it may be easily seen, that this must be wrong. The value of a reversion, to be received when a person of a given age dies, cannot be the same, whether the condition of obtaining it is, that he shall die before, or that he shall die after another person. That is, whether it is provided, that a purchaser, if he succeeds, shall get into possession saoner or later. The reversion in the latter
 case must, without doubt,' be of less value than in the former.

 The first question here proposed, resolves itself into the following géneral Question.
 " What is the present value of a given re" versionary estate, to be entered upon after " the failure of two lives, provided one in " particular of them should be the longest " life?"

 Now, the present value of an estate to be enjoyed for ever, after the failure of the longest of two lives, is "the value of the longest " of the two lives, subtracted from the per" petuity; and the remainder multiplied by " the annual rent of the estate."-The value of the longest of two lives is, as is well known, the value of the two joint lives, subtracted from the sum of the ${ }^{m}$ values of the two single lives. In the present case, therefore, it is 9.82 , (the value of two joint lives at the age of 40 by Table VII. in the next volume) subtracted from twice 13.196 ; (the value of a single life at the same age) that is, 16.57 years' purchase. And this subtracted from 25 , (the perpetuity) gives 8.43 ; which, multiplied by 40 , gives $\neq 337.2$, ' the value of the given estate were it certainly to be enjoyed, after the extinction of the longest of two lives both 40; that is, whether one

 or other of them failed last. But that A's dife. in particular should fail last; is an even chance. The true value of the reversion, therefore, is half the last value, or $£ 168.6$. - In like manner. The second Question is the same: with the Question, "What is the \because present nalue of $\neq 40$ per ann. for ever to : be entered upon after the extinction of two \because joint lives both 40 ; that is, whenever either " of them shall fail; provided the first that "fails should happen to be A's life in paraic ticular $?^{\text {s, }}$ - And the answer is found by subtracting the present value of the streo joint lives from the perpetuity : and multiplying the remainder by $\frac{1}{2}$, that is is_{5} by, the chance that A in particular shall die first: And this will give the required value, $\neq 303.66^{\mathrm{n}}$.

 In short.., It appears in both these cases, that, according to the first method of solution, we are to subtract from the perpetuity the value of one of the single lives, when, in the former case, the value of the longest of the two lives, and, in the latter case, the value of their jpint continuance, ought, in reality, to be subtracted. I need not say what prodigiqus errort may often axise from hence ;iand how unfit such a methgd, fifi solution is for practice.
 Mr. Simpson, in P-3.22, of his Sełect Exercises speaks on this subject in the follow-

 ing manner.-" I have been very particular " on these kinds of Problems; and the more "s so, as there has been no method before " published, that I know of, by which they "can be rightly determined. 'Tis true, the " manner of proceeding, by first finding the " probability of Survivorship (which me" thod is used in my former work, and " which a celebrated author has largely in" sisted on in three successive editions), may "، be applied to good advantage, when the " given ages are nearly equal; but then it is "certain, that this is not a genuine way of " going to work, and that the conclusions " hence derived are at best but near approxi" mations."

 This excellent mathematician has here expressed himself much too favourably of the method of solution on which I have remark. ed.-In both the cases I have specified, the ages are equal; and yet, in one of them the error is a good deal above a third of the true value, and in the other a fifth: And, it is obvious, that in cases where three equal lives are taken, the errors will be much greater. -Mr. Simpson's Observations in this passage are true only, when applied to a different method used by himself, in the 28th and following Problems of his Treatise on the Doctrine of Annuities and Reversions. This method is exact when the lives are equal; but it gives results which are too far from the 1
 truth, when there is any considerable inequality between the lives.

 It is with reluctance I have made some of, these remarks. Mr. De Moivre has made very important improvements in this branch of science ; and the highest respect is due to his name and authority. This, however, only renders these remarks more necessary.

 In the first Chapter (Question 11th, 12th, 15 th, and 16 th $^{\circ}$. I have given a minute account of the method of finding, in all cases, the values of the reversions which have been the subject of this Essay.-But Mr. Morgan, in his Treatise on Life Assurances, has carried this enquiry much farther.

 Account of the Values of the Renereal of Leases, and of the Method of computing them.

 > TABLE,

 Shewing the Fines due on the Renewal of a Lease of 21 Years after $5,7,9$, or 14 Years have elapsed.

 | $\begin{aligned} & \text { Yeary } \\ & \text { unex. } \\ & \text { pired. } \end{aligned}$ | At 4 percent | Values of the At 6 per cent. | he Renewal.
 At 8 per cent | At 10 per cent. |
 | :---: | :---: | :---: | :---: | :---: |
 | 16 | $2 \frac{3}{8}\left\{\begin{array}{l} \text { Years } \\ \text { pur- } \\ \text { chase } \end{array}\right.$ | $1 \frac{2}{3}\left\{\begin{array}{l} \text { Years } \\ \text { pur } \\ \text { chase } \end{array}\right.$ | $1 \%\left\{\begin{array}{l} \text { Years } \\ \text { pur- } \\ \text { chase } \end{array}\right.$ | ${ }^{4}\left\{\begin{array}{l} \text { Years } \\ \text { pur- } \\ \text { chase } \end{array}\right.$ |
 | 14 | $3 \frac{1}{2}$ | $2{ }^{\frac{1}{3}}$ | | $1{ }^{\frac{3}{8}}$ |
 | 12 | $4 \frac{2}{3}$ | $3 \frac{3}{8}$ | 2.2 | |
 | 10 | $5 \stackrel{9}{\text { 90 }}$ | 4 $\frac{2}{5}$ | $3{ }^{\frac{3}{18}}$ | $2 \stackrel{1}{7}$ |

 The value in every case of this kind is the difference between the value (in Table II. Vol. II.) of the whole term, and the yalue (in the same Table) of the unexpired part of the term.

 If leases are held by lives, the value of their renewal is the difference between the value of all the lives (including the life or lives to be added) and the value of the existing life or lives.-For example.

 The value of the renewal of a lease held by two lives after one has dropped is (supposing the existing life aged 50 , and the life
 to be added aged $20 t$ the difference between 16.033 (the value by Table XIX, of the single life of 20) and 9.630 the value by Table XX. of the joint lives 20 and 50 P. That is, 7.403, or $7 \frac{2}{5}$ of a year's purchase nearly, reckoning interest at 4 per cent. 7 Agaia, the value of the renewal of a lease held by three lives, after one is dropped, is (supposing the two existing lives aged 50 and 55 , and the life to be added aged 20) the difference bet ween the value of the longest of the three lives and the value of the longest of two lives aged 50 and .55 . The former of these values by Tables XIX. and XX. is 18.178 q, the latter by the same Tables is 13.872^{r}; their difference is 4.306, or $4{ }^{3}{ }^{3}$ \% years purchase; which, therefore, is the fine due for such a renewal, reckaning interest at 4 per cent.
 N. B. If the values of such renewals are wanted at any rates of interest higher or lower than those'for which the values of single and joint lives are given in the Ta bles in the 2 d "volume, they must be "deduced from the values in, those Tables by the Rules given in the rext Chapter:

 It would be an endles's labour to compute tables shewing the value of such renewals in all cases; and these directions render it an unnecessary labour.
 ${ }^{9}$ See page 2.
 ${ }^{q}$ By Prob. X. in Simpson's Select Exercises, or by the Rule at the end of Table XXVI. Vol. II.

 I See the note in page 43 of this volume.

 Sometimes a right may be purchased to put in, on the first vacancy among the lives by which an estate is held, such a new life as the purchaser shall chuse.-In order to find the present value of such a right, it is necessary to assume some given value for the life to be nominated, and this assumed value multiplied by the difference between the value of the existing life, if there is but one (or the value of the joint continuance of the existing lives, if there are two or more) and the perpetuity ; and the product, divided by the perpetuity, will give the answer.

 ## EXAMPLE.

 Let there be but one existing life, and let it be a male life, its age 50, and consequently its value (by Table XIX.) 10.269, reckoning interest at 5 per cent.-LLet the life to succeed it be reckoned a life of the greatest possible value, that is, a life aged 8 , and consequently worth (by the same Table) 15.226 year's purchase at 5 per cent.-The difference between 20 (the perpetuity) and 10.269 multiplied by 15.226 is 148.164 ; which product, divided by 20 , gives 7.408 , the answer.

 If there are two existing lives, both 50 , the value of their joint continuance will be (by Table XX.) 7.522; the difference between which value and the perpetuity is 12.478 , which multiplied by 15.226 , and the product divided by the perpetuity, gives 9.5 the ans.wer
 answer in this case, or the number of years purchase which ought to be paid for a right of renewing a lease now held by two lives both aged 50, by putting in the best life in the room of the first of the two lives that shall happen to drop.

 The rule for finding the value is the same, if the right to be sold is the right of presentation to a church-living at the death of the present incumbent.

 The estate meant in these rules is the nett surplus rent after deducting all tazes and repairs.

 ## CHAPTER IV.

 On Mr. De Moivres Rules for calcultating i, the Walues of Joint Livgs; zoith a Post script, containing a Specimen af the mast \because xpedinious Method of calculating the shllues $-\therefore$ of Single and Foint liver, according to any Table of Observations,

 THE calculation of the values of single and joint lives, from given Tables of Observation, being tedious and troublesome; Mr. De Moivre has had recourse to two hypatbeses, which give easy rules for this purpose ; and which, he thought, corresponded with sufficient exactness to Observation.The first of these bypotbeses is, that the probabilities of life decrease, as we advance from childhood to old age, in an aritbmetical progression; or in such a manner, that the differexce is always the same, between the number of persons living at the beginning of any one year, and the number living at the beginning of the next following year.-The other bypothesis is, that the probabilities of life decrease in a geometrical progression; or in such manner, that the proportion is al-

 ## the Values of Foint Lives. 205

 ways the same, between the number of persons living at the beginning of any one year, and the number living at the beginning of the next following year:-All the Tables of Observation sheiv, that the real law, according to which human life wastes, comes much nearer to the former bypotbesis, than the latter. - In Tables V. VIII. and XVII. in the next volume, it is so near the former bypothesis, that the difference between them in the middle stages of life is scarcely worth regarding. According to this bypotbesis, therefore (accommodated to the Breslave Table, in the manner mentioned in the note, page 2.) Mr. De Moivre calculated the values of single lives; and the rules founded upon it for this purpose are so easy, that an operation which would otherwise take up much time, may be performed almost immediately.

 By proceeding on the same principles, the values of joint lives might have been calculated; but the rules for this purpose derived from these principles, are far from being equally easy in practice. Here, therefore, Mr. De Moivre quitted bis first hypothesis; and finding, that the second hypothesis afforded; in the case of joint lives, rules that were as easy as the rules given by the other hypothesis were in the case of single lives, he chose to adopt this bypothesis; believing at the same time, that the values of joint lives, obtained by rules derived from it, would not deviate much from the truth. But in this
 this he was greatly mistaken. The values of t wo joint lives obtained by these rules are so wrong, that in finding the present value, in a single payment, of one life after another, they generally give results, which are near a guarter of the true value too great; and about two-fiftbs too great, when the value is sought in annual payments during the joint lives. These are errors so considerable, that I think it of particular importance that the public should be informed of them, in order to prevent the inconveniencies and perplexities they may occasion.

 Mr. Simpson (in the Appendix to his Treatise on the Doctrine of Annuities and Reversions) has observed, that Mr. De Morvere's rules for finding the values of joint lives are wrong. But I don't know, that it has been ever attended to, that they are so wrong as I have found them. Mr. Simpson's remarks point out chiefly the errors in these rules, when the values of tbree or more joint lives are calculated by them; but, till I was forced to a particular examination of this subject by some difficulties into which I found myself brought by following Mr. De Moivre too implicitly, I did not at all suspect, that any such errors as I have mentioned, could arise from these rules, when the values of only two joint lives are calculated by them. Mr. De Moivre, in consequence of other remarks contained in Mr. Simpson's Appendix, altered, in the 4th edition
 tion of his Treatise, some of his rules. It is surprizing he did not see reason at the same time to alter these.

 That there may be no doubt about the truth of these observations, I will just mention a few examples of the difference between the values' of a given reversionary annuity, according to the rules to which I have objected, and the values, according to the exact method of deducing them from Mr. De Moivre's first bypothesis.

 Let the proposed annuity be $\mathscr{E} 30$ to be enjoyed for what shall happen to remain of the life of a person now 40 years of age, after the life of another person of the same age. The value of the joint lives (interest being at 4 per cent.) is, by the 2 d hypothesis, or Problem 2d of Mr. De Moivre's Treatise on Life-Annuities, 8.964 ; which substracted from 13.196; (the value, by the first hypothesis, of a single life at 40) gives 4.23; which remainder, multiplied by 30 , gives $\mathscr{E}_{126.9}$, or the value of the reversion in a single present payment. And 126.9, divided by the foregoing value of the joint lives, is $£_{14.16 \text {; or, the value of the }}$ reversion in annual payments, during the joint lives.-But the true values are $£_{101.1}$ in a single payment, by Quest. I. Chap. I. and $\mathscr{E}_{10.3 \text {, in annual payments; by Quest. }}$ IV.-The former values, therefore, are a quarter of the true value too great in the single
 single payment 3 and near treo-ffiftiss too great in the annual payments.

 The true value of the same annuity for a life at 66 , after another life of the same age, is, (reckoning interest as before, at 4 percent.) $\mathscr{E} 68$ in a single payment ; and $£_{13.5 \text { in }}$ annual payments. - But these values, according to the Problem just quoted, are $\mathscr{E} 91$ and $\neq 21$, one of which is near a third, and the other above balf the true value too great.

 In unequal lives these errors may be no less considerable.-Thus; if the value of the proposed annuity be required for a life at 70 , after a life at 30 years of age; it will, by the same Problem, be $\notin 26.5$, in a single payment; and $£ 5.3$, in annual payments during the joint lives. But the true values are \mathbb{E}_{17} and £3.05.

 Where 3 or more lives are concerned the errors will be still greater.

 The true values of the joint lives, mentioned in these Examples, have been calculated by a rule in page 16, of Mr. Simpson's Treatise on the Dóctrine of Annuities and Keversions, and explained in Note (L) at the end of this volume.-To save, however, a great deal of trouble hereafter, I have thought proper to calculate Table VII. in the next volume, which gives the exact values according to Mr. De Moivre's first hypothesis, of two joint lives, for every five years of human life, from 10 to 70.

 This

 This bypothesis, I have observed, does not differ much.from the Tables of Observation for Breslaw, Northampton, and Norwich. Between the ages of 30 and 40 , it gives the values of single lives almost the same with the Breslaze Table. Under 30, it gives them somewhat less; and above 40, somewhat greater. But it ought to be remembered, that whereever it does this, it gives, at the same ages, the values of the joint lives also too little or too great; and that, consequently, the rea sults from it, in calculating the values of Res versions, and of the longest of given lives, come so much nearer to exactness.

 The rules to which I have objected are the only ones given by Mr. De Moivre, in all the editions of his Treatise on Life-Annuities. But it seems, this great mathematician became at last sensible, that they were too incorrect; and therefore, at the end of the last edition of his Treatise on the Doctrine of Cbances, page 320, (a work which gets inte comparatively few hands) he had given other rules which come nearer the truth. But even these rules produce errors so great in many cases; (particularly when combined with the errors of the hypothesis) that it will be best never to use them.

 ## POSTSCRIPT

 FOR THE FOURTH EDITION.

 S
 SINCE the former editions of this work 1 have found reason to be dissatisfied with Mr. De Moiure's first as well as his second hypothesis. There is no situation in which, in the first and last periods of life, it corresponds to fact; and in some situations, particularly great towns and country parishes, it does not correspond sufficiently to fact in any periods of life. An inspection of the Tables of Observation in the next volume will prove this. However useful, therefore, this hypothesis may be in many cases, it would be best not to be under any necessity of having recourse to it; and for this reason, and also to render this work as complete as I am capable of making it, \mathbf{I} have, while this edition has been in the press, and with the help of some friends, calculated the tables in the next volume of the values of single and joint "lives from the Northampton register of mortality. This register has been chosen for this purpose, because it gives the mean values of lives between the highest and lowest, and is on this

 account, and also in consequence of the corrections I have made in it, better fitted for general use than any other. - I have, however, retained the Tables of these values according to Mr. De Moivre's' Hypothesis, published in the former editions of this work, because all the examples in the preceding part of this work have been taken from them, and there are some cases in which they may still prove of use.

 The computation of the values of joint lives correctly from a given table of Ob servations, is a business so tedious and tire some, that it has scarcely been ever executed, except by Mr. Simpson from the London Observations; and as these give the values of lives among a body of people taken in the gross in one of the worst of all situations, they are by no means fit for common use. -II have therefore, employed a good deal of attention to find out the most easy and expeditious method of making these calculations; and I shall here give the following Specimen of a method (deduced from that described by Mr. Morgin in his Treatise on Life-Annuities and Assurances, chap. 2d, sect. $2 \mathrm{~d}, \mathrm{p} .56$) which, at the same time that it renders mistakes impossible, will expedite this work as much as the nature of it will allow, and render the computation of the values of any number of joint lives not more difficult or tedious than the computa-
 tion of the values of an equal number of single hives.

 Let the Table of Observations be that for Nortbampton, or Table 17 th, in the next volume; and let the rate of interest be 4 per cent.

 Write down on a paper to be always kept in sight the Logarithms of all the numbers in the column of the living without the Indices.

 ## EXAMPLE FIRST.

 Living at age σ - $11650-$ Log $^{m>}$. . 066325
 1 year 8650.937016 \&c. \&c. \& c.

 | age $81-$ | $406-$ | .608526 |
 | ---: | :---: | :---: |
 | $82-$ | $346-$ | .539076 |
 | $83-$ | $289-$ | .460897 |
 | $84-$ | $234-$ | .369215 |
 | $8 c$ | $8 c$. | $\& c$. |
 | age $91-$ | $34-$ | .531478 |
 | $92-$ | $24-$ | .380211 |
 | $93-$ | $16-$ | .204119 |
 | $94-$ | $9-$ | .954242 |
 | $95-$ | $4-$ | .602059 |
 | $96-$ | $1-$ | .000000 |

 Find the Logarithm of $\mathscr{E 1}_{1 \text {, increased by }}$ its interest for a year, and also the Logarithm of the value of \mathscr{E}_{1}, payable at the end of a number of years equal to the difference
 ference between the greatest and least ages inethe Table of Observations lessened by th differemce of age between the joint lives whose values are to be calculated.

 ## EXAMPLE SECOND.

 Intèfest being at 4 per cent. \mathscr{E}_{1}, increased by its interest for a year is 1.04 ; and the Logarithm of 1.04 is .0170333 .

 In the Northanapton Table of Observations the greatest age is 96 , and the least age 0 . The difference, therefore, is 96 ; and sup'posing the given difference of age between the two joint lives to be 10 years, the value of $£_{1}$ payable at the end of a number of years equal to the difference between the greatest and least ages in the table lessened by the difference of age between the joint lives, will be the value of $£_{1}$ payable at the end of 80 years. Table 1 st, in the next volume, shews this value to be . 0342872 (reckoning interest at 4 per cent.) the Logarithm of which number (striking out the Index) is . 535133 .
 N. B. The best way of finding this Logarithm is by multiplying the Logarithm of \mathscr{E}_{1} with its interest for a year by the difference between the greatest and least ages in the Table lessened by the difference of age between the joint lives, and subtracting the product from unity. The remainder will be the Logarithm sought. Thus, in the present
 present example . 0170333 multiplied by 86, gives (without the Index) .464864, which subtracted from unity leaves . $535136 . \longrightarrow$ Had the given difference of age between the two joint lives been 15 years, and the youngest age in the Table of Observations 3, and the oldest 94, the Logarithm .0170333, instead of being multiplied by 86 , must have been multiplied by 76, and the product (without the Index) subtracted from unity would have been . 705469 .

 Having made these preparations, the calculations must begin with the oldest joint lives, and proceed upwards according to the following specimen.

 OBSERV.ATIONS.

 In the addition of the Logarithms in this Specimen, the decimal parts only are to be retained:

 In subtracting them, it is of no consequence whether a Logarithm is greater or less than that from which it is to be sub. tracted.

 In every column, the numbers in the lines B, C, D, E, F, G, H, give the value. The other numbers give the proof.

 The first Logarithms in the lines \mathbf{B} and \mathbf{C} are always the Logarithms of the numbers of the living at the oldest ages in the Table of Observations, which have the given difference of age; and the following Logarithms are the Logarithms of the numbers living at the next ages \boldsymbol{m}_{2} each one yeat younger than the preceding.

 The values of the two joint lives are the numbers of the Logarithms in $\mathrm{H}_{\text {; }}$ and the proof of these values consists in the equality of the sum of the numbers in L and M in one column, to the number in M in the following. column. And it should be particuldrly observed that this proqf answers sufficiently if, in consequance of placing the numbers in L and M ovet one anpther in any order, a sum can be made out whose first 6 figures are equal within 5 or 6 units; to the succeeding number in M. If the proof does not answer within
 within this limit, the calculations have been too incorrect ', and it will be necessary to examine the numbers not verified by the last proof; namely, the numbers of the two Logarithms in \mathbf{I} and H in the preceding column ; the Logarithms in B and C and D in the subsequent column; and the Logarithms in A, E, F, G, H, I, and K, in the column where the proof is found to be deficient.

 ## EXAMPLE.

 The addition, in the foregoing specimen, of the first numbers in L and M to one another, when the first figure in M is placed under the second in L, makes 315020 , which is within one unit the same with 315019 , the second number in the line M ; and this proves the calculations so far to be sufficiently correct._-In like manner.; the addition of the third numbers in L and M gives the fourth in M within three units. But had the addition of the numbers in L and M given the subsequent number in M only within fix urits; that is, had it given the number 287947 or 287935^{\prime}, an incorrectness of too much consequence mitust have insinuated itself, arrd it would have been proper to examine the numbers and Logarithms just mentioned, in order to detect it.

 ## 218

 In calculating the last value; that is, the value when the youngest of the lives is the youngest in the Table (or a life just born, according to most Tables) this proof will change into a new proof, verifying. all the preceding values. For the Logarithm of $£_{1}$ with its interest for a year (that is, . 017033 when the interest is 4 per cent.) subtracted from the Logarithm in F, will leave a Logarithm, the number of which will be the sum of the numbers in L and M in the preceding column.

 This Specimen will be accommodated ta the calculation of the values of single lives ${ }^{4}$, by striking out the Logarithms in C, and making those in D the same with those in B; and also making the first Logarithm in A, from which all that follow are deduced, the Logarithm of \mathscr{E}_{1} payable at the end of a number of years, equal to the oldest age in the Table when it begins at birth, or to the difference between the oldest and youngest when it begins at any age after birth.

 This Specimen will be accommodated to the calculation of the values of any three joint lives, if to the Logarithms in B and C are added (in. order to obtain D) the Loga-

 rithms of the numbers living at any other ages, the difference between which and the ages in \mathbf{B} and \mathbf{C} is given; and if, likewise, the series of Logarithms in A is deduced from the Logarithm of the value of \mathscr{E}_{1}, payable at the end of a number of years equal (if the ages begin at 0) to the oldest in the Table; or (if they do not begin at 0) to the difference of age between the oldest and youngest in the Table; lessened (in both cases) by the differences of age between the oldest and youngest of the three joint lives whose values are sought,-Thus. Supposing the given differences between the ages of the joint lives whose values are to be calculated to be 5 and 10 years, and the interest 4 per cent. and the Table of Observations to terminate (as the Northampton Table does) at 96 years of age, and to begin at 0. The series of Logarithms to be added to those in B and C in order to obtain D, will be the Logarithms of the living at 91 in the first column, at 90 in the second, at 89 in the third, \&c. And the Logarithms in A will be the same with those in the Specimen. But had the differences of age been 10 and 15 years, the Logarithms to be added to those in B and C would have been the Logarithms of the living at $81 ; 80$, 79, \&c. and the first Logarithm in A would have been the product of 81 into .017033 subtracted from unity or .620302 , and the following Logarithms in A would have been
 :017033 added continually to this Logarithm.

 It is hence evident that in this method computations of the values of any given treo or three or four joint lives are nearly as easy as computations of the values of single lives; and may, after some practice, be performed almost as expeditiously as the numbers can be written.

 An error in a book of Logarithms may, if not suspected, produce infinite perplexity; and therefore, when, after repeating any calculation, the source of an error cannot be discovered, it will be right to examine the Tables from whence the Logarithms have been taken. In general, the order in which the numbers follow one another will immediately discover an error of the press; but if not, a different book of Logarithms should be consulted: and if possible, Mr. Gardiner's, which is so correct as to be almost invaluable.

 It may be proper to observe once more, that it is very easy to take from Sher win's or Gardiner.'s Tables the numbers of Logarithms, and the Logarithms of numbers to sixx figures; and that if this is done, the sesulting values will be always accurate to at least the , third place of decimads. But, if such a: degree: of accuracy: is ohought needless, it will be sufficient to take them to five figures.

 The Theorems on which the method of calculations here explained (exclusive of the proof) are grounded, will be given in note N at the end of this volume. But a more distinct investigation of these Theorems, and also an explanation of the principles on which the proof is founded, has been given by Mr. Morgan in his Treatise on Annuities and Assurances. Chap. 2d. Sect. 2d.

 The rules for finding, from the values of two or three joint lives, the values of the longest of any tres or three lives; and also a very easy rule for obtaining nearly the value of any three joint lives from the values of two joint lives, will be given in the next volume at the end of the Table, shewing the valueg of two joint lives according to the Northampton Observations.

 Account of a method of deducing, from the correct values (according to any observations) of any single or joint lives at one rate of interest, the same values at other rates of interest.

 ## PRELIMINARY PROBLEMS.

 Problem I. The expectation given of a single life by any table of observations; to find its value, supposing the decrements of life equal, at any given rate of interest.

 Solution.

 Sorvtion. Find in Table II. the value of an annuity certain for a number of years equal to twice the expectation. Multiply this value by the Perpetuity increased by unity, and divide the product by twice the expectation. The quotient subtracted from the perpetuity will be the value required.

 ## EXAMPLE.

 The expectation of a life aged ten, by the Northampton observations (See Table XVIII.) is 39.78. Twice this expectation is 79.56. The value of an annuity certain for 79.56 years is, by Table II. (reckoning interest at 4 per cent.) 23.894. The product of 23.894 into 26 (the perpetuity increased by unity) is 621.244, which, divided by 19.56, gives 7.808. And this quotient subtracted from 25 (the perpetuity) gives 17.192 years purchase, the value of a life aged ten, deduced from the expectation of life at that age, according to the Nortbampton observations.

 This is the rule by which Mr. De Moivre has calculated the table commonly used of the values of lives according to his hypothesis; and from this Table (the sixth Table in the next volume) the value required in this problem may be deduced more compendiously in the following manner, provided the expectation does not exceed 38."Take the difference between twice the
 " expectation and 86 ; and the value in the "Table corresponding to that difference, if " not less than 10, will be the value sought." Thus; twice the expectation of a life aged 30 (that is, its complement) is, by Table XVIII. 56.54. The difference between it and 86 , is 29.46. And since the value corresponding to age 29 in Mr. De Moivre's valuation of lives (or in Table V.I. in the next volume) is (reckoning interest at 4 per cent.) 14.816; and the value corresponding to age 30 is 14.614 ; it is obvious, that the value corresponding to age 29.46 must be the greatest of these two values lessened by $\frac{46}{108}$ of the difference between it and the least. This difference is 202; and ${ }^{46}{ }^{40}$ of it (or .202 multiplied by .46) is .093 , which subtracted from 14.816, gives 14.723 the value sought of a life whose expectation is 28.27 . (or whose complement is 56.54) on the supposition of an equal decrement of life.

 ## PROBLEM II.

 Having the expectations given of any two lives by any table of observations, to deduce from thence the value of the joint lives at any rate of interest supposing an equal decrement of life.

 Solution. Find the difference between twice the expectation of the youngest life, and twice the expectation of the oldest life increased by unity and twice the perpetuity. Multiply

 Multiply this difference by the value of an annuity certain for a time equal to twice the expectation of the oldest life; and by twicethe same expectation divide the product, reserving the quotient.

 From twice the perpetuity subtract the reserved quotient, and multiply the remainder by the perpetuity increased by unity ${ }^{x}$. This last product divided by twice the expectation of the youngest life, and then subtracted from the perpetuity, will be the required value.

 ## EXAMPLE.

 Let the joint lives proposed be a life aged 10, and another aged 15, and let the table of observations be the Nortbampton Table, and the rate of interest 4 per cent. Twice the expectations of the two lives are 79,56 and 73.02. (See Table XVIII.)

 Twice the expectation of the oldest life,' increased by unity and twice the perpetuity, is 124.02 , which lessened by 79.56 (twice the expectation of the youngest life) leaves 44.46 for the reserved remainder. This remainder multiplied by 23.574 (the value

 of an annuity certain \bar{y} for 73.02 years) and the product divided by 73.02 (twice the expectation of the oldest life) gives 14.352 the quotient to be reserved; which subtracted from double the perpetuity, and the remainder (or 35.648) multiplied by the perpetuity increased by unity (or by 26) gives $\mathbf{9 2 6 . 8 5}$, which divided by 79.56 (twice the expectation of the youngest life) and the quotient subtracted from the perpetuity; we have 13.350 for the required value.

 This calculation may be made more easily by logarithms in the following manner.

 $\left.\begin{array}{l}\text { Twice the expecta- } \\ \text { tion of the eldest is }\end{array}\right\} \quad 73.02$
 Add twice the per-

 Subtract twice the expectation of
 the youngest --
 79.56

 Remainder - 44.46
 Log. of 44.46 is $1: 647,9695$
 Log. of 23.574 is $1: 372,4333$

 $$
 \begin{array}{ll}
 \text { Sum }- & -3.020,4028 \\
 \text { Subtract } & 1.863,4418 \text { Log.ofy } 3.02
 \end{array}
 $$

 Subtract 14.352
 Remains - 35.648 Lggar. of which is $1.552,0352$
 Add Log. of the perpetuity increased by unity $1.414,9733$

 $$
 \text { Sum - - } 2.967,0085
 $$

 Subtract \log. of twice the expectation of the $\} 1.900,6948$ Remainder . . . 1.066,3137

 The number of this last remainder is - 11.650, which subtracted from 25 (the perpetuity) leaves 13.350 , the value sought.See the algebraical canon in Note (L) at the end of this volume.

 GENERAL

 ## GENERAL RULE.

 Call the correct value (supposed to be computed for any rate of interest) the first value.

 Call the value deduced (by the preceding problems) from the expectations at the same rate of interest, the second value.

 Call the value deduced from the expectations for any other rate of interest the third value.

 Then, the difference between the first and second values added to or subtracted from the tbird value, just as the first is greater or less than the second, will be the value at the rate of interest for which the Third value has been deduced from the expectations.

 The following examples will make this pera fectly plain.

 EXAMPLE I.
 In the 48th and 49th Tables, Vol. II. the correct values are given of two joint lives among mankind at large, without distinguishing between males and females, according to the SWEDEN observations, reckoning interest at 4 per cent.

 Let it be required to find from these values the values at 3 per cent.; and let the ages of the joint lives be supposed 10 and. 10.

 The correct value by Table XLVIIİ. (reckoning interest at 4 per cent.) is 16.141. The expectation of a life aged 10 is (by Table XLIV.) 45.07. The value deduced from this expectation at 4 per cent. by Prob. II. is 14.539 . The value deduced by the same problem from the same expectation at 3 per cent. is 16.808 . The difference between the first and second values, is 1.602 , which, added to the third value (the first being greater than the second), makes 18,410 the value required.

 ## EXAMPLE II.

 Let the values, be required of two joinf: lives aged 50 and 60 , at an interest of 3 per cent. from the correct value given at an interest of 4 per cent. according to the Northampton observations.

 First or correct value at 4 per cent. by. Table XXII. is 6:98Q. The expectation of 50 is 17.99 ; of 60 , is 13.21 , by Table XVIII. The second value, or the value deduced from these expectations at 4. per cent. is, by Prob. II. 7.182. The. third value, or the value deduced from the same expectations at 3 per cent. is 7.704 .The difference between the first and second is .193 , which (since the second is greaterthan the first) must be subtracted from the third, and the remainder (or 7.5.11) will be the value required. -The exact value at- 3 : per cent. is, by Table XXII. 7.460.

 If the value is required at 5 per cent. the third value will 6e 6.732 ; and the difference subtracted from 6.732, will leave 6.539 the value at 5 per cent.

 The exact value at this rate of interest; is (by Table XXII.) 6.568.

 ## EXAMPLEIII.

 Let the value be required of a single male life aged 10 , at 3 per cent. interest, from the correct value at 4 per cent. according to the Sweden observations.

 First, or correct value at 4 per cent. (by Table XLVII.) is 18.674 . Thë expectation of a male life aged 10, is (by Table XLIV.) 43.94.

 The second value (or the value deduced from this expectation by Prob. I.) is 17.838.

 The third value (or the value deduced from the same expectation at 3 per cent.) is 21.27\%.

 The difference between the first and second is 836 ; which (since the first is greater than the second) must be added to the tbird; and the sum, (that is, 22.113) will be the value required.

 The third value at 5 per cent. is 15.286 ; and the difference added to 15.286 makes 16.122 the value of a male life aged 10 at 5 per cent. according to the Sweden ob servations.-The exact value at 5 per cent. is (by Table XLVII.) 16.014.

 Again.

 230 Account of Values of Lives
 Again. The difference between 16.014 (the correct value at 5 per cent.) and 15.286 (the value at the same interest deduced from the expectation) is .728 ; which, added (because the first value is greater than the second) to 13.335 , (the value deduced at 6 per cent. from the expectation) gives 14.063 , the value of the same life, reckoning interest at 6 per cent.

 These deductions, in the case of single lives particularly, are so easy, and give the true values so nearly, that it will be scarcely ever necessary to calculate the exact values (according to any given observations) for more than one rate of interest.

 If, for instance, the correct values are computed at 4 per cent. according to any observations, the values at $3,3 \frac{1}{2}, 4 \frac{1}{2}, 5,6,7$, or 8 per cent. may be deduced from them by the preceding rules, as occasion may require, without much labour or any danger of considerable errors.-The following comparisons will shew in some measure how far these deductions may be depended on.

 Value of Single Male Lives by the Sweden Table of Observations,

 | Ages. | Vatues at 5 per cent. deduced from the correct values by Table XLVII. at 4 per cent. | Correct values by Table XLVII. at 5 per cent. |
 | :---: | :---: | :---: |
 | 5 | 15.879 | 15.786 |
 | 10 | 16.122 | 16.014 |
 | 15 | 15.707 | 5.624 |
 | 30. | 13.909 | 13.889 |
 | 60 | 7.969 | 7.963 |
 | 70 | 5.417 | 5.389 |

 Values of two joint Lives by the Northampton Table of Observations.

 | . Ages. | Values at 5 fer cent. deduced from the correct values at 4 ble XX. \&c. | Correct value at 5 per cent. by Tables $2 c$. | Values at 3 per cent. deduced from the cor- rect values at 4 per cent. 4 . Ta- ble XX. \&c. | |
 | :---: | :---: | :---: | :---: | :---: |
 | 5-5 | 11.989 | 11.984 | 15.618 | 15.638 |
 | 15-15 | 11.986 | 11.960 | 15.184 | 15.229 |
 | 25-25 | 10.775 | 10.764 | 13,389 | 13.383 |
 | 40-40 | 9.006 | 9.016 | 10.756 | 10.764 |
 | 60-60 | 5.842 | 5.888 | 6.692 | 6.606 |
 | 15-40 | 10.214 | 10.205 | 12.368 | 12.459 |
 | 30-60 | 7.285 | 7.292 | 8.396 | 8.378 |
 | 50-60 | 6.555 | 6.568 | 7.471 | 7.461 |

 Values of Single Lives by the Nortanmp. ton Table of Observations,

 | Ages. | $\begin{aligned} & \text { Values at sper } \\ & \text { cent. deduced } \\ & \text { from the cor- } \\ & \text { rect values at } \\ & \text { tper rent by } \\ & \text { Table XIX. } \end{aligned}$ | Correct values at 5 per sent. byTable XIX. | Values at $3 \gamma^{\prime}$ cent. deduced from the cor- rect values a s per cent by Table XIX | orrect value
 ut 3 per cent
 by Tabje XIX |
 | :---: | :---: | :---: | :---: | :---: |
 | 5 | 14.825 | 14.827 | 20.435 | 20.473 |
 | 10 | 15.162 | 15.139 | 20.652 | 20.663 |
 | 68 | 6.546 | 6.536 | 7.353 | 7.367 |
 | Ages | Values at 4per
 cent deduced
 from the cor-
 rect values at
 sper cent. by
 Table XIX.
 1 | Correct value:
 at 4 per cent by Table XIX | Values at 51 cent. deduced lom the cor- rect values at 3 per cent. by Table XIX. | Correct vadues at 5 per cont. |
 | 5 | 17.239 | 17.248 | 14.850 | $14.827{ }^{\text { }}$ |
 | 10 | 17.500 | 17.523 | 15.173 | 15.139 |
 | 68 | 6.920 | 6.930 | 6.560 | 6.536 |

 It may be observed in these examples that the deduced values are sometimes almosi the same with the correat values; that genes rally they do not differ mare than a 20 th of 3oth of a year's purchase; that in joind lives they differ less than in single lives; and that they come equally near to one anather wibatever the rates of interest are.

 The following observation will shew the reasson of the circumstance last mentioned.

 The value deduced from the expectation coincides with the correct value when the rate of interest is little or nothing ; and, consequently, the difference between the two values
 values becomes then little or nothing; and to this it is continually tending as the interest is diminished. On the contrary ; the increase of value occasioned by the decrease of interest tends to make the difference greater. There is, therefore, in this case, the counter-action of two causes which always keep the difference nearly the same in all rates of interest.

 The preceding rules seem to leave nothing wanting on this subject, except tables of the values of two joint lives at any one rate of interest, when the lives are either both male or both female lives. , But the following rule for finding these values from the values in the Sweden Tables, will pender the labour of composing such tables almost needless.

 Rule for computing from the values of two joint lives in Tables XLVIII. and XLIX. the values of two joint lives both male or both female.
 " Find in that column of Table XLV. " which shews the expectations of lives in " general; two ages whose expectations " come nearest to the expectations of the " two male or the two female lives pro" posed,
 ". From these expectations deduce, by ". Hhe rule in p. 223, the value of two joint 2 " lives

 * lives at those ages; and take the difference " between this value and the correct value at " those ages in Tables XLVIII. and XLIX. " Deduce also, by the rule in page 223, " the value of the joint lives proposed, " from the expectations in Table XLV. of * male and female lives. The difference " just found added to this last value, if the es value before deduced from the expecta. " tions of lives in general is less than the " correct value, or subtracted from it if " greater, will be nearly the correct value of "the two joint lives proposed,"

 ## EXAMPLE.

 Let the two proposed lives be both $f e$ male lives, one aged 20 and the other aged 50.

 The expectation of a female life aged 20 is, by Table XLIV. 39.15. The expectation nearest to it, in Table XLV. shewing the expectations of lives in general, is 39.47 , corresponding to a life aged 18.——In like manner; the expectation in the same Table nearest to the expectation of a female life aged 50 ; is 19.09 , corresponding to age 49.-_The value (deduced from these ex. pectations) of two joint lives aged 18 and 49 , is, by the rule in p. 223, 10.245 . The correct value, taken from Table XLIX. is. 10.851 , and the difference is .606 , which difference added (since the former value is

 Less than the latter) to 10.281 (the value of two joint female lives aged 50 and 20 , deduced from the expectations by the rule in p. 223) makes 10.887, the correct value nearly of the joint female lives.

 In order to find how near the values thus found come to the exact values, let the value of a single female life aged 20 , (reckoning interest at 4 per cent.) be computed in the same manner from the correct values given in Table XLVII. of the values of lives in general.

 The expectation in Table XLV. nearest to the expectation in Table XLIV. of a f_{e} male life aged 20 , is 39.47 , which; in Table XLV. (shewing the expectation of lives in general) is the expectation of a life aged 18.-The value of a life aged 18, deduced from this expectation by the rule in p. 223, is 17.138. The correct value in that column of Table XLVII. which shews the values of lives in general, is 17.897. The former value is the least, and the difference is .759.-The value deduced by the same rule from 39,15 (the expectation of a female life aged 20) is $\mathbf{1 7 . 0 8 3}$, and the difference just found added to this value, makes it 17.842 , which is very nearly the same with 17.872 , the correct value in Ta ble XLVII._The value deduced in the same manner of a male life aged 20 , is 17.363 . The correct value (in Table XLVII.) is 17.335.

 336 Account of Values, छेc.

 ## Value by t bis Rule of

 A female life aged 50 , is 12.000 ——orrect value is 12.096
 Of aged 6 c, is 9.018 _Correct value is 9.039
 life aged 30 , is 15.722 —Correct value is 15.751
 aged 70 , is 5.702 —Correct value is 5.670
 In calculating by this rule, when any other rate of interest than 4 per cent. is used; the values of the joint lives, at that rate of interest, (deduced from the expectations and from the values in Tables XLVIII. and XLIX. at 4 per cent. by Prob. II. p. 223) must be taken for the correct values.- It must likewise be remembered, that this Rule cannot be used when the youngest of the two joint lives is less than ten years of age. In other' cases; the values found by this Rule, will be right generally within a 3ath or 40 th of a year's purchase, and never, I be.lieve, wrong more than a 15 th or $20 t h$ of a year's purchase,

 Theorems for finding tbe Differences: E®c. 232

 ## CHAPTER V.

 Short and easy Theorems for finding, in all Cases, the differences between the Values of Annuities payable Tearly, and of the same Annuities payable Half-yearly,-2yarterly, or Momently. Communicated in $\&$ Letter, to Sir John Pringle, Bart. P.R.S. and read to the Royal Saciety, Nauembar $\mathbf{9}_{n}$ -1775 , and published in the Philosophical Transactions, Vol. 66, Part I.

 ThE values of annuities, as given in all the common Tables, suppase them paid yearly. But it is well known, that generally they are paid half-yearly, and sometimes quarterly : and that this is a circumstance which always adds to their value. The difference between the values of annuities, according as they are paid in these different ways, I have seen no where stated with accuracy; and therefore, I have thought that the following attempt to do this may be of some use.

 Annuities are of two sorts. They are either payable certainly or conditionally. Of.

 238 Theorems for finding the Differences
 Of the former sort are all annuities which are payable at fixed times, without depending on any contingency. Of the latter sort are all annuities on lives. I will first consider the first sort of annuities.

 Let r denote the interest of $£_{1}$ for a year ${ }_{3}$ and n the term or number of years during which any annuity is to be paid. Let P denote the value of the perpetuity, or the quotient arising from dividing \mathscr{E}_{1} by its interest for a year. Let y denote the value of an annuity for n years, supposing it to be paid yearly ; b its value, payable half-yearly; q its value, payable quarterly; and m its value, payable momently.

 THEOREM 1.

 $$
 y=\mathrm{P}-\frac{1}{r \times 1+\gamma \eta^{n}}
 $$

 THEOREM II.

 $$
 b=\mathrm{P}-\frac{1}{r \times 1+\left.\frac{r}{2}\right|^{2 n}}
 $$

 between the Values of Annuities, E_{0}. 239

 THEOREM III.

 THEOREM IV.
 $\mathrm{M}=\mathrm{P}-\frac{r}{r \mathrm{~N}}$. where N denotes the number which hath $r n$ for its hyperbolic logarithm, and $r n \times 0.43429448$ for its logarithm in Brigg's system.

 ## EXAMPLE.

 Let the rate of interest be 4 per cent. and the term 5 years, and consequently $r=0.04$. $\pi=5$. $\quad \mathrm{P}=25$.

 $$
 \text { Then, } \begin{aligned}
 y & =4.4518 \\
 b & =4.4913 \\
 q & =4.5120 \\
 m & =4.5415
 \end{aligned}
 $$

 ## EXAMPLEII.

 Let the rate of interest be the same, and the term for which the annuity is payable 25 years.

 Then

 240 Theorems for finding the Differences

 $$
 \text { Then } \begin{aligned}
 y & =15.0220 \\
 b & =15.7118 \\
 q & =15.7694 \\
 m & =15.801
 \end{aligned}
 $$

 ## EXAMPLE III.

 Interest being the same, let the term be 50 years.

 $$
 \text { Then, } \begin{aligned}
 y & =21.4822 \\
 b & =21.5491 \\
 q & =21.582 \\
 m & =21.616
 \end{aligned}
 $$

 EXAMPLEIV.
 Interest being the same, let the term be 100 years.
 $\begin{aligned} \therefore \text { Then, } y & =24.505 \\ b & =24.523\end{aligned}$

 $$
 \begin{aligned}
 & q=24.532 \\
 & m \doteq 24.542
 \end{aligned}
 $$

 In the foregoing Theorems it may be observed, that the ratio to one another of the values of annuities payable yearly, halfyearly, quarterly, and momently, is greatest when n is least; that it decreases contimually as n increases, till at last it vanishes when n becomes infinite or the annuity is a per-
 perpetuity. Agreeably to this it appears, in the examples I have given, that the values in the first example differ more from one another in proportion than the values in the second example; and that these also differ more than the values in the third; and that in the last example all the values are nearly the same.

 These values computed by Mr. De Moivre's rules in his Treatise on Life-ánnuities, p. 86 and $124, \& \mathrm{c}$. come out greater when n exceeds and less when n falls short of 15 or 20 years. But those rules suppose the halfyearly and quarterly interests of money to be less than half or a quarter of the yearly interest. For instance; the value of an annuity of $£_{1}$ payable half-yearly and quarterly for 50 years is, according to Mr . De Moivre's rules, 21.699 and 21.772 , or a 99th part and 74 th part more than the value of the same annuity payable yearly, supposing money improved at 4 per cent. when the annuity is paid yearly; and at $£ 1.98$ per cent. when it is paid half-yearly; and at $\mathcal{E}^{0} .985$ per cent. when it is paid quarterly, That is, supposing money improved at a rate of half-yearly or quarterly interest, which, instead of being a half or a quarter of the yearly interest, is only that halfyearly or quarterly payment which, in consequence of being laid up and improved at compound interest, will in a year amount to the sum that makes the yearly interest. It voL. I . R is

 ## 242 Theorems for finding the Differences

 is obvious that this cannot be the proper method of computing these values. But not to insist on this; I will next state the different values of the second sort of annuities; or of life-annuities, according as they are supposed to be payable yearly, half yearly, quarterly, or momently.

 Let r as before be the interest of \mathscr{E}_{1} for a year; n the complement of a given life ${ }^{2}$, y, b, q, and m, the values respectively of an annuity certain for n years payable yearly, half-yearly, quarterly, or momently; \mathbf{P} the perpetuity; Y the present value of an annuity on a life whose complement is n, payable yearly; \boldsymbol{H} the value of the same annuity payable half-yearly; and Q and m the values of the same annuity payable quarterly and morfiently.

 The complement of a life is, in Mr. De Moivre's hypothesis, the number of years it wants of 86. In all other cases, it is double the expectation of is life; that is, it is double the quotient (diminished by $\frac{x}{2}$ unity) arising from dividing the sum of all the living in a Table of Observations from the age (inclusive) of the giverr life to the extremity of life, by the number of the living at that age.
 between the Values of Annuities, B*. 243

 $$
 \text { Then, } \begin{aligned}
 \mathrm{Y} & =\mathrm{P}-\frac{1+r}{r n} \times y . \\
 \mathrm{H} & =\mathrm{P}-\frac{1+\frac{r}{2}}{n r} \times b_{0} . \\
 \mathrm{Q} & =\mathrm{P}-\frac{1+\frac{r}{4}}{n r} \times q . \\
 \mathrm{M} & =\mathrm{P}-\frac{m}{n r} .
 \end{aligned}
 $$

 ## EXAMPLE 1.

 Let the life be supposed of the age of 36 . The complement of such a life is 50 , according to Mr. De Moivre's hypothesis; and also very nearly, according to the Breslaw and the Nortbampton Tables of Observations. Therefore, n will be 50. Let the rate of interest be 4 per cent. or $r=0.04$. $P=25$ 。 $\prime y=21.482 . \quad b=21.549 . \quad q=21.582 . \quad m=$ 21.616. See p. 240.

 Therefore, $\mathrm{Y}=25-\frac{1,04}{50 \times 0,04} \times 21,482=13,829$

 $$
 \begin{aligned}
 & H=25-\frac{1,02}{50 \times 0,04} \times 21,549=14,010 \\
 & Q=25-\frac{1,01}{50 \times 0,04} \times 21,582=14,101 \\
 & M=25-\frac{21,616}{50 \times 0,04} \quad=14,191
 \end{aligned}
 $$

 R 2
 EXAMPLE。

 244 Theorems for finding the Differences

 ## EXAMPLEII.

 Let the life be supposed of the age of 61. The complement of this life is 25 by Mr. De Moivre's hypothesis and the Northampton Table of Óbservations. Therefore, interest supposed at 4 per cent,

 $$
 \begin{aligned}
 & \mathrm{Y}=25-\frac{1,04}{25 \times 0,04} \times 15,622=8,753 \\
 & \mathrm{H}=25-\frac{1,02}{25 \times 0,04} \times 15,712=8,973 \\
 & \mathrm{Q}=25-\frac{1,01}{25 \times 0,04} \times 15,769=9,072 \\
 & \mathrm{M}=25-\frac{15,801}{25 \times 0,04} \quad=9,199
 \end{aligned}
 $$

 The different values, given by these theorems ${ }^{2}$ of life-annuities payable yearly; half-yearly, and quarterly, suppose nothing to be due to an annuitant for that year, halfyear, or quarter, in which he shall happen to die. If, on the contrary, he is to be

 - It is of no-consequence that these theorems are founded on the hypothesis of an equal decrement of life ; for taking equal yearly values, (or values nearly equal) the differences between them and half yearly and quarterly values are almost exactly the same, whether they are deduced from real observations, or from this hypothesis. -_Even in the hypothesis itself it requires a considerable difference in the yearly value, to produce any material difference in the excess of the half-yearly and quarterly values.
 between the Values of Anniaities, \&'c. 245
 entitled to such part of the annuity as shall be proportioned to the time which shall happen to intervene between his death and the time when the payment immediately preceding his death became due; or in other words, if the annuity is an annuity secured by land, $\frac{y}{2 n}$ must be added to the first theo: rem in order to obtain the value of such an annuity payable yearly. And in like manner, $\frac{h}{4^{n}}$ must be added to the second theorem to obtain the value of the same annuity payable half-yearly: and $\frac{q}{8 n}$ to the third theorem, to obtain its value payable quarterly.

 The value, therefore, in the first example, of an annuity payable yearly on a life aged 36 being 13,829; its value, if secured by land, or to be enjoyed to the last moment of life, will be $13,829+\frac{21,482}{100}=14,043$. If secured by land and payable half-yearly, its value will be $14,010+\frac{21,549}{200}=14,117$. If secured by land and payable quarterly, its value will be $14,101+\frac{21,582}{400}=14,155$. The like values in the second example are $9,065,9,130$, and 9,151 .

 Life-annuities payable monthly or weekly

 ## 240 Theorems for finding the Differences.

 may be considered as of the same value with annuities payable momently; and it is evident, that they must be enjoyed nearly to the last moment of life.

 From these rules and examples it may be gathered, that the difference between the values of annuities on lives payable yearly, half-yearly, quarterly, and momently, increases continually with the ages; but, if not secured by land, this difference can never be so great as a quarter of a year's purchase in the case of annuities payable yearly and half-yearly ; three-eighths of a year's purchase in the case of annuities payable yearly and quarterly ; and half a year's purchase in the case of annuities payable yearly and momently.

 Mr. Simpson, in his Treatise on the Doctrine of Life-annuities, p. 78, and in his Select Exercises, p. 283, hath given a quarter of a year's purchase as the addition always to be made to the value of a lifeannuity payable yearly, in order to obtain its value payable half-yearly; and threeeighths of a year's purchase, if its value payablé quarterly is required. But it appears, that these are too large additions; and, whatever be the rate of interest or the number of lives, a fifth of a year's purchase will be generally more than a sufficient addition, if the value of the annuity is desired payable half-yearly; and three-tenths of a year's purchase, if the value of the annuity
 is desired payable quarterly. Mr. De Moivre's rules, in p .85 of his Book on Life-annuities, for finding the values of life-annuities payable half-yearly and quarterly from their values payable yearly, are still less correct ; for they suppose the difference bet ween these values the same, whether the annuities are life-annuities or annuities certain.
 Mr. Dodson, in the first question in the third volume of his Mathematical Repository, hath given a rule for finding the value of an annuity secured by land and payable yearly, which coincides with that here given; and Mr. De Moivre, in p. 338 of his Treatise on the Doctrine of Chances, hath given a theorem for this purpose, which also brings out nearly the same answers: But $\mathrm{Mr} . \operatorname{Simpson}$, in Prob. I. p. 323 of his Select Exercises, makes the excess of the value of such an annuity above the value of an annuity payable yearly but not secured by land, double to the same excess derived from Mr. Dodson's and Mr. De Moivre's rules. The truth is, that Mr. Dodson's rule gives the exact value; and that Mr. Simpson's problem gives the value, not of an annuity secured by land and payable yearly, but of an annuity secured by land and payable momently ; and also, that his method of solution implies a rate of interest some what less when the annuity is payable momently than when it is payable yearly.

 248 Theorems for finding the Differences
 But to prevent all perplexity on this subject, I will subjoin the following investigations, which will be easily understood by those who are acquainted with the common methods of calculating the values of lifeannuities,

 Let r, as before, be the interest of \mathscr{E}_{1} for a year. Then the present value of $£_{1}$ payable at the end of one year, two years, three years, $\& c$, will be $\frac{1}{1+r}, \frac{1}{1+]^{2}}, \frac{1}{1+r}{ }^{3}$, \&c. respectively. And the present value of an annuity certain for n years payable yearly is the sum of this series continued to n terms, b or $\frac{1}{r}-\frac{1}{r \times 1+\eta^{n}}=P-\frac{1}{r \times 1+\eta 1^{n}}=y$.

 In like manner, the present value of half $£_{1}$ (that is, of $10 s=£ 0.5$) payable at the end of half a year, a year, a year and a half, \&c. reckoning half-yearly interest at half

 - In the Postscript it will be proved, that the sum of nterms of the series' $\frac{1}{a}+\frac{1}{a^{2}}+\frac{1}{a^{3}}+\frac{1}{a^{4}}$, \&c. is $\frac{1}{a-1}-\frac{1}{a^{*} \times 1}$. Substitute $1+r$ for a, and it will appear that the sum of n terms of the series $\frac{1}{1+r}+$ $\frac{1}{1+r T^{2}}+\frac{1}{1+r^{3}}, \& c$, is $\frac{1}{r}-\frac{1}{r \times 1+r)^{4}}$.
 betreeen the Values of Annuities, E®c. 249
 the annual interest, is $\frac{0,5}{1+\frac{r}{2}}, \stackrel{0,5}{1+\frac{7}{2}},\left.\frac{0,5}{1+\frac{r}{2}}\right|^{3}, 8 c$.
 And the present value of an annuity certain payable half-yearly for n years, each payment to be half the yearly payment, is the sum of this series continued to $2 n$ terms; or,
 $\frac{0,5}{\frac{r}{2}}-\frac{0,5}{\left.\frac{r}{2} \times 1+\frac{r}{2}\right]^{2 n}}=\frac{1}{r}-\frac{1}{\left.r \times 1+\frac{r}{2}\right)^{2 n}}=\mathrm{P}-$
 $\frac{1}{\left.r \times 1+\frac{r}{2}\right\}^{2 n}}=b$
 By the same steps it will appear, that the present value of an annuity certain for n years to be received in quarterly payments, each a quarter of the annual payment is,
 $\frac{0,25}{\frac{r}{4}}-\frac{0,25}{\frac{r}{4} \times 1+\frac{r}{4} 4^{4 n}}=\mathbf{P}-\frac{1}{\left.r \times 1+\frac{r}{4}\right]^{4 n}}=q$.
 And also, that the present value of an annuity certain for n years, to be received in momently payments, each the same proportional part of the yearly payment that the moment is of the year, must be $P-\frac{1}{r \times 1+\frac{r}{1000, \& c .}}{ }^{1000,8 c \cdot n}$
 But, by the binominal theorem,
 $\overline{1+\frac{r}{1000, \& c .}}^{1000,8 c \cdot n}=.1+r n+\frac{r^{2} n^{2}}{2}+\frac{r 3 n 3}{2 \times 2}+$

 ## 250 Theorems for finding the Differences

 $\frac{r+n^{4}}{2, \times 3 \times 4}$, \&c، which series approximates indefinitely to the number of which $r n$ is the hyperbolic logarithm, by Prob. 1. Sect. XI, Vol. II. of Mr. Simpson's Fluxions; or by Prop. 1, p. 40, of his Treatise on Trigonometry. Therefore $\mathbf{P}-\frac{1}{r \times 1+\frac{1}{1000, \& c \mathrm{c}}{ }^{1000, \mathrm{kc} . \mathrm{Z}}}$ $=\mathrm{P}-\frac{1}{r \mathrm{~N}}=m$, as expressed before. See p. 239.

 If the value of an annuity of \mathscr{E}_{1} for n years is required payable half-yearly, and the half-yearly interest of \mathscr{E}_{1} instead of being half the yearly interest (or $\frac{r}{2}$), is supposed to be $\overline{1+\eta}-1$; the answer will be
 nued to $2 n$ terms $=\frac{0,5}{\overline{1+r} \frac{1}{\frac{1}{2}}-1}-\frac{0.5}{1+\ln \times \overline{1 \times \eta} \frac{1}{2}-1}$
 $=1-\frac{1}{1+7^{n}} \times \frac{1}{2 \times \sqrt{1+\eta}-2}$; which value is
 to $1-\frac{1}{1+r)^{n}} \times \frac{1}{r}$ (the value of the same annuity payable yearly. supposing the yearly interest
 between the Values of Annuities, \mathcal{E}^{2} c. 251
 interest of $£_{1}$ to be r) as $\frac{-\frac{x}{2}}{1+7^{\frac{1}{2}}-1}$ to $\frac{r}{r}$; agreeable to Mr. De Moivre's deduction inhis Treatise on Life-annuities, p. 125, 4th edit,

 - In the same manner the value payable quarterly is $1-\frac{1}{1+\eta \eta^{n}} \times \frac{1}{4 \times 1+r^{\frac{1}{2}}-1}$ and the value payable momently $=1-\frac{1}{1+r_{x}} \times \frac{1}{1000,8 \mathrm{cc} \times 1+\left.\right|_{\frac{1}{\text { боб }}, 8 \mathrm{c} .-1} ^{1}}$ Consequently the value of an annuity certain, payable quarterly or momently, is to the same value, payable yearly, as $\frac{1}{4 \times \frac{1}{1+\eta^{4}-1}}$, or $\frac{1}{\mathrm{~N}}$, to $\frac{1}{r}$ (N being the hyperbolic logarithm of $\overline{1+r)}$. Supposing, therefore, the interest to be 4 per cent. the value ofan annuity payable yearly must be invariably increased in the ratio of 1.0101 , or 1.0152 or 1.01986 to 1 , according as it is payable either half-yearly, quarterly, or momently. The difference, however, between the values of annuities payable yearly and at shorter intervals is known to be continually lessening in proportion to the length of the term, till at last, when the term is extended to a perpetuity, those values become the same, whether the payments are made yeariy or momently. . But such an equality can never take place according to Mr. De Möiure's rules; nay, if the term be extended only to 70 years, and interest be 6 per cent. an annuity payable quarterly will be worth more than even the perpetticity when the payments are made yearly. This is manifestly erroneous, and therefore sufficient to prove the fallacy of Mr. De Moivre's method of solution,
 M.

 ## This

 ## 252 Theorems for finding the Differences.

 This implying, in the case of annuities payable half-yearly, a smaller interest than half the yearly interest (for $\overline{1+\eta} \eta^{\frac{1}{2}}-1$ is less than $\frac{\tau}{2}$) gives the difference between their value and the value of annuities payable yearly, greater than the truth.

 But to return to the investigaion of the theorems in the former part of this paper.

 Let us again call P the perpetuity, and y the value of an annuity certain for r years and payable yearly; it is well known that the'value of $£_{1}$ payable yearly on a life whose complement is n is (supposing an equal decrement of life) $\frac{n-1}{n \times 1+r}+\frac{n-2}{r \times 1+\eta^{2}}$ $+\frac{n-3}{n \times 1+n^{3}}, \& c$ c. continued to n terms 。 $=\mathrm{P}-\frac{1+r}{n r} \times y=\mathrm{y}$.
 c Sce Mr. De Moivre's Treatise on Life-annuities, p. 99, $4^{\text {th }}$ edition. Or his Doctrine of Chances, p. $3^{11,}$ 3d edition. Or Mr. Dodson's Mathematical Repository, Vol. II. p. 137. Or Mr. Simpson on Annuities and Reversions, p. 14. In consulting these writers, care should be taken to remember, that they use r to denote the principal and interest of $\mathfrak{E} 1$ for a year; whereas it hath been most convenient for me in these observations to make r stand only for the interest. In these writers, therefore, r signifies the same with $1+r$ in this paper; and $r-1$ the same with r.
 between the Values of Annuities, 犬゚c. 253
 In like manner, supposing money improved at an half-yearly interest equal to half the yearly

 It is said above, that the value of an annuity payable yearly on a life whose complement is n, is $\frac{n-1}{n \times 1+r}+$ $\frac{n-2}{n \times 1+r \eta^{2}}+\frac{n-3}{n \times 1+\eta^{3}}, \& c$. continued to n terms. This expression is equal to $\frac{n}{n \times 1+r}+\frac{n}{n \times 1+\eta^{2}}+$ $\frac{n}{n \times 1+r^{3}}, \& c .(n)-\frac{1}{n} \times \frac{1}{1+r}+\frac{2}{1+\eta^{2}}+\frac{3}{1+r r^{3}}, \& c_{0}$
 (n). But $\frac{n}{n \times 1+r}+\frac{n}{n \times 1+r^{2}}+\frac{n}{n \times 1+r 1^{3}}, \quad \& c . \quad(=$

 - $\frac{1}{1+r}+\frac{1}{1+\eta^{2}}+\frac{1}{1+\eta^{3}}, \&(c)=.\frac{1}{r}-\frac{1}{r \times 1+\eta^{n}}=y$ see p. 248.) Also, by a theorem which will be demonstrated in the postscript, and putting a for any given quantity, $\frac{1}{a}+\frac{2}{a^{2}}+\frac{3}{a^{3}}, \& c$. continued to n terms, $=\frac{a}{a-1]^{2}}$ $-\frac{n}{a_{n}} \times \frac{1}{a-1}-\frac{1}{a_{n}} \times \frac{a}{a-11^{2}}$. Therefore, if $1+r$ is substituted for a, and y for $\frac{1}{r}-\frac{1}{r \times \sqrt{1+\eta^{n}}}$, the sum (multiplied by $\frac{1}{n}$) of n terms of the series $\frac{1}{1+r}+\frac{2}{1+n^{2}}+$ $\frac{3}{1+r)^{3}}, \& c$. will come out $\frac{1+r}{n r} \times y-\frac{1}{r} \times \frac{1}{1+\lambda^{n}} ;$ or $\frac{1+r}{n r} x y+y-\frac{1}{r}$. Therefore, the series ${ }_{n}^{1} \times \frac{1}{1+r}+$ $\frac{2}{1+n^{2}}$

 ## 254 Theorems for finding the Differences

 yearly interest, or to $\frac{r}{g}$, the value of the same
 1
 annuity payable half-yearly, is $\frac{1}{2} \times \frac{\overline{n-\frac{1}{2}}}{n \times 1+\frac{r}{2}}$
 $+\frac{n-1}{\left.n \times 1+\frac{r}{2}\right]^{2}}+\frac{n-\frac{3}{2}}{\left.n \times 1+\frac{r}{2}\right]^{3}}, \& c$ continued to $2 n$
 terms $=\frac{1}{2} \times \overline{n \times 1+\frac{r}{2}}+\overline{\left.\overline{n \times 1+\frac{r}{2}}\right)^{2}}+\overline{\left.n \times 1+\frac{r}{2}\right]^{3}}$,
 $\& c$. continued to $2 n$ terms $-\frac{1}{2} \times \overline{n \times 1+\frac{r}{2}}+$

 terms. But the sum of the first of these two
 series, or of $\frac{1}{2} \times \frac{n}{n \times 1+\frac{r}{2}}+\frac{n}{\left.n \times 1+\frac{r}{2}\right)^{2}}, \& c .\left(=\frac{t}{2}\right.$
 $\frac{2}{\frac{2}{1+\eta^{2}}+\frac{3}{1+\eta^{3}}}$ \&c. continued to n terms and sub. tracted from the series $\frac{1}{1+r}+\frac{1}{1+\eta\rceil^{2}}+\frac{1}{1+\eta^{2}}, \& c$. continued to n terms; that is, the value of the life will be $y-\frac{1+r}{n r} \times y+y-\frac{1}{r}=\frac{1}{r}-\frac{1+r}{n r} \times y=\mathrm{p}-\frac{1+r}{n r}$ $\mathrm{x} y=\mathrm{y}$.
 between the Values of Annuities, EC. 255 $\dot{x} \frac{1}{1+\frac{r}{2}}+\xlongequal[1+\left.\frac{r}{2}\right|^{2}]{1}, \& c$.) is b, see p. 249, \&c.
 And the sum of the second series is the same with half the sum of the series $\frac{1}{2 n} \times$ $\frac{1}{1+\frac{r}{2}}+\frac{2}{\left.1+\frac{r}{2}\right)^{2}}+\frac{3}{\left.1+\frac{r}{2}\right]^{3}}$; $\& c$. (zn). But by the theorem mentioned in the last note, the sum of n terms of the series ${ }_{a}^{1}+\frac{2}{a^{2}}+\frac{3}{a^{3}}$, \&c. is $\frac{a}{a-1^{2}}-\frac{n}{a^{n}} \times \frac{1}{a-1}-\frac{1}{a^{n}} \times \frac{a}{a-1^{2}}$. Therefore, if $1+\frac{r}{2}$ is substituted for a, $2 n$ for n, and b for $\frac{1}{r} \frac{1}{\left.r \times 1+\frac{r}{2}\right)^{i n}}$, the sum of the second series (that is, of $\frac{1}{4} \times \frac{1}{2 n} \times \frac{1}{1+\frac{r}{2}}+\frac{2}{\left.1+\frac{r}{2}\right]^{2}}+$
 $\xlongequal[{\left(1+\frac{r}{2}\right]^{3}}]{3}, 8 \mathrm{c} .(2 n)$ will come out $\frac{1+\frac{r}{2}}{\pi r}+b-$
 $\frac{1}{r} \times \frac{1}{1+\left.\frac{r}{2}\right|^{2 n}}$, or $\frac{1+\frac{r}{2}}{n r} \times b+b-\frac{1}{r}$. There-

 fore,

 236 Theorems for finding the Differences
 fore, the second series subtracted from the first, leaves $\frac{1}{r}-\frac{1+\frac{r}{2}}{n r} \times b=\mathrm{P}-\frac{1+\frac{r}{2}}{n r} \times b=\mathrm{H}$, agreeably to the second theorem in p. 248.

 By reasoning in the same way it may be easily found, that $Q=P-\frac{1+\frac{r}{4}}{u r} \times q$; and $\mathrm{M}=\mathrm{P}-\frac{1+\frac{r}{1000, \mathrm{cc} .}}{n r} \times m=\mathrm{P}-\frac{m}{n,}$, agreeably to the third and fourth theorems in p. ${ }^{243 .}$

 These theorems, I have said, suppose that an annuitant is entitled to no payment for that year, half-year, or quarter, in which he dies. If, on the contrary, he is to be entitled when he dies, to such a part of the yearly, half-yearly, or quarterly payment as shall bear the same proportion to the said payments respectively, as the intermediate time between the last payment and his death bears to the whole year, half-year, or quarter; in this case, supposing the annuity payable yearly, it is evident, since there is the same chance for his dying in one half of any year as in the other, that he will have an expectation of half a year's payment more than he would be otherwise entitled to. But the value of half $£_{1}$ to be paid at the death of a person
 betsoeen the Values of Annuities, E'c. 257 whose complement of life is n, is $\frac{1}{2} x$ $\frac{1}{n \times \overline{1+r}}+\frac{1}{2} \times \frac{1}{n \times 1+n)^{2}}+\frac{1}{2} \times \frac{1}{n \times \overline{1+n} n^{3}}, \quad \& c$. continued to n terms (d) $=\frac{y}{2 n}$.

 In like manner, 2 person who enjoys an annuity secured by land, payable half-yearly, will have an expectation of a quarter of a year's payment more than he could be otherwise entitled to; the value of which is
 to $2 n$ terms $=\frac{h}{4 n}$. By the same reasoning it will appear, that $\frac{q}{8 n}$ is the addition to be made to the value of an annuity payable quarterly, in order to obtain its value when secured by land.

 IN the note, p. 248, the expression $\frac{1}{a-1}$ - $\frac{1}{a^{n}} \times \frac{1}{a-1}$ is given as the sum of n term's of the series $\frac{1}{a}+\frac{1}{a^{2}}+\frac{1}{a^{3}}+\frac{1}{a^{4}}$, \&c. to $\frac{1}{a_{n}}$, and the expression $\frac{a}{a-1)^{2}}-\frac{n}{a^{2}} \times{ }_{a-1}^{1} \quad \frac{1}{a^{2}}$

 > , d See page 248, \&c.
 vol. 1 .

 258 Theorems for finding the Differences
 $\times \frac{a}{a-1)^{2}}$, is given, in p. 253, as the sum of n terms of the series $\frac{1}{a}+\frac{2}{a^{2}}+\frac{3}{a^{3}}+\frac{4}{a^{4}}$, \&c.

 The following investigation of these theo rems being very easy, will not, perhaps, be unacceptable to those who have studied this subject.

 Put $\mathrm{A}=\frac{1}{a}+\frac{1}{a^{2}}+\frac{1}{a^{3}}+\frac{1}{a^{4}}, \&$ c. $\frac{1}{a^{n}} . \quad B=$ $\frac{1}{a}+\frac{2}{a^{2}}+\frac{3}{a^{3}}+\frac{4}{a^{4}}, \quad \& c \cdot \frac{n}{a n}$.

 Then $\mathrm{A} \times a=1+\frac{1}{a}+\frac{1}{a^{2}}+\frac{1}{a^{3}}, \& \mathrm{c}$. to $\frac{1}{a^{n-1}} \cdot$ and $\mathrm{A} \times a-1+\frac{1}{a^{2}}=\frac{1}{a}+\frac{1}{a^{2}}+\frac{1}{a^{3}}, 8 \mathrm{cc}$. to $\frac{1}{a^{n}-1}$ $+\frac{1}{a^{n}}=\mathrm{A}$,
 and $\mathrm{A} \times a-\mathrm{A}(=\mathrm{A} \times \overline{a-1})=\mathrm{I}-\frac{1}{a n}$.
 Therefore, $\mathrm{A}=\frac{1}{a-1}-\frac{1}{a^{n}} \times \frac{1}{a-1}$, which is the first theorem.
 Again, $\mathrm{A} \times a=1+\frac{1}{a}+\frac{1}{a^{2}}+\frac{1}{a^{3}}, \& \mathrm{c}$. to $\frac{1}{a^{n-1}}$, and $\mathrm{B} \times a=1+\frac{2}{a}+\frac{3}{a^{2}}+\frac{4}{a^{3}}, \& \mathrm{c}$. to $\frac{n}{a n-1}$.
 Therefore, в $\times a-\mathrm{A} \times a=\frac{1}{a}+\frac{2}{a^{2}}+\frac{3}{a^{3}}, \& \mathbf{C}$. to $\frac{n-1}{a n-1}$.
 between the Values of Annuities, EGc. 259
 To both sides of the last equation add $\frac{n}{a r}$, and it will appear, that
 в $\times a-\mathrm{A} \times a+\frac{n}{a x}=\frac{1}{a}+\frac{2}{a^{2}}+\frac{3}{a^{3}}+\frac{4}{a^{4}}, \quad \& \mathbf{c}$. to $\frac{n-1}{a n-1}+\frac{n}{a n}=$ в.

 Therefore, $\mathrm{B} \times a-\mathrm{B}=\mathrm{B} \times \overline{a-1}=\mathbf{A} \times \frac{a^{\prime}-\frac{n}{a n} ;}{}$ and $B=\frac{A \times a}{a-1}-\frac{n}{a^{n+1}-a n}$.

 For A, in this last equation, substitute its equal, or $\frac{1}{a-1}-\frac{1}{a n} \times \frac{1}{a-1}$, and the resulting equation will be $\frac{d}{a-1}-\frac{n}{a n} \times \frac{1}{a-1}-\frac{1}{a n} \times$ $\frac{a}{\overline{a-1)^{2}}}=\mathrm{B}$, which is the second theorem.

 When n is infinite, all but the first terms in both these theorems vanish; and therefore, $\frac{1}{a-1}$ is the sum of the series $\frac{1}{a}+\frac{1}{a^{2}}+\frac{1}{a^{3}}, \& c$. continued infinitely; and $\frac{a}{a-11^{2}}$ is the sum of the series $\frac{1}{a}+\frac{2}{a^{2}}+\frac{3}{a^{3}}, \& c$. $^{-}$ continued infinitely.

 By a like deduction, putting
 $\mathrm{c}=\frac{1}{a}+\frac{2 \times 2}{a^{2}}+\frac{3 \times 3}{a^{3}} \times \frac{4 \times 4}{a^{+}}$, \& c . to $\frac{n^{2}}{a_{R}}$,
 s 2
 and

 260 Theorems for finding the Differences and ${ }^{\prime} \mathrm{D}=\frac{1}{a}+\frac{2 \times 2 \times 2}{a^{2}}+\frac{3 \times 3 \times 3}{a^{3}}+\frac{4 \times 4 \times 4}{a^{4}}, \& \mathrm{c}$. to $\frac{n^{3}}{a^{n}}$, it may be found that $c=\frac{A+2 \mathrm{~B}+1}{a-1}-$ $\frac{\overline{n+1})^{2}}{a^{n} \dagger^{1}-a^{n}}$, and $\mathrm{D}=\frac{\Delta+3 \mathrm{~B}+3 \mathrm{C}+1}{a-1}-\frac{\overline{n+1}{ }^{3}}{a^{n}+1-a^{n}}$. And consequently, substituting the values of A and B, that
 $\mathrm{C}=\frac{a^{2}+a}{\overline{a-11^{3}}}-\frac{n^{2}}{a^{2}} \times \frac{1}{a-1}-\frac{2 a n}{u^{n}} \times \frac{1}{a-1^{2}}-\frac{a^{2}+a}{a^{2}} \times$
 $\frac{1}{a-1]^{3}}$.
 And, substituting the values of $\mathrm{A}, \mathrm{B}, \mathrm{C}$, that $\mathrm{D}=\frac{a^{3}+4 a^{2}+a}{\overline{a-11^{4}}}-\frac{n^{3}}{a^{n}} \times \frac{1}{a-1}--\frac{3 a n^{2}}{a^{n}} \times \frac{1}{\overline{a-11^{2}}}-$
 $\frac{3 a^{2} n+3 a n}{a^{n}} \times \frac{1}{a-1)^{3}}-\frac{a^{3}+4 a^{2}+a}{a^{n}} \times \frac{1}{a-11^{4}} . \quad$ Or,
 since all but the first terms in these expressions vanish when n is infinite, that the sum of the series $\frac{1}{a}+\frac{4}{r}+\frac{9}{a^{3}}, \& c$. continued infinitely is $\frac{a^{2}+a}{a-1}$; and that the sum of the series $\frac{1}{a}+\frac{8}{a^{2}}+\frac{97}{a^{3}}+\frac{64}{a^{4}}$, \&c. continued infinitely is $\frac{a^{3}+4 a^{2}+a}{a-1}$.

 These are all the theorems necessary for calculating the values of annuities on single lives, and on any two or three joint lives, upon
 between the Values of Annuities, Br. 261
 upon the hypothesis of an equal decrement of life.

 Supposing r the interest of \mathscr{L}_{1} for a year, the sum of n terms of the series $\frac{1}{1+r}+\frac{1}{1+r)^{2}}+$ $\frac{1}{1+n)^{3}}, \& c$. is the present value of an annuity certain for n years; and $\frac{1}{1+r}+\frac{2}{1+\left.r\right|^{2}}+$ $\frac{3}{1+x)^{3}}+\frac{4}{\overline{1+]^{+}}}$, (continued to n terms) is the present value of an annuity certain beginning with \mathscr{E}_{1}, and increasing to \mathscr{E}_{2} the second year, to $£ 3$ the third year, \&c. -

 If this last annuity is not an annuity certain for a given term, but a life-annuity, the value of it (supposing n the complement of the life, a the value of an annuity certain for n years, G the value of two equal joint lives whose common complement is n, \mathbf{P} the perpetuity, and p the value of \mathscr{E}_{1} to be received at the end of n years) will be $\overline{A-G}$ $\times n+n p \mathrm{P}-\mathrm{A} \mathbf{P} \times \overline{1+r}$.

 ## EXAMPLES,

 Let the term be forty-one years, and the rate of interest 4 per cent.

 The value of an annuity of $\nsupseteq 1$ certain for this term is $£ 20$.

 The

 262 Theorems for finding the Differences, \&c.
 The value of an annuity certain for the same term, and beginning with \mathscr{E}_{1} at the end of the first year, but increasing to $\mathscr{E} 2_{2}$ at the end of the second year, to $\mathcal{E} 3$ at the end of the third year, and so on till it becomes \mathscr{E}_{41} at the end of the forty-first year, is (by the Second Theorem, putting $1+r$, or 1.04 for a) $\mathscr{E}^{2} 14 \ldots 10$ s.

 The value of an annuity increasing at this rate without end is $\mathscr{E} 650$.

 If the annuity is a life-annuity which is to increase at the rate of $£_{1}$ every year during the whole possible continuance of a life whose complement is forty-one years (or whose age, according to Table VI, in the next volume, is forty-five), the present value of it will be, by the last theorem, \mathscr{E}_{135}. But a much simpler rule for finding the values of annuities of this sort will be given in the following notes. See Note I; and alsa Mr. Morgan on Assurances, p. 119.

 ## POSTSCRIPT.

 THE first four Tables in the next volume furnish with the means of determining easily the values and amounts of sums and annuities for the most common balf-yearly as well as yearly rates of interest ; Mr. Smart, in his very useful and comprehensive Tables, having given the balf-yearly values and amounts improperly.

 It is very obvious, that the amount at any given yearly interest of any given annuity payable balf-yearly, is the same with the amount of balf that annuity at half the interest, and payable a double number of times. The amount, for instance, at 4 per cent. of an annuity of $£_{10}$ payable yearly for 30 years, is, by Table IV. £560.849.

 If it is payable balf-yearly, its amount will be the same with the amount at 2 per cent. of an annuity of $£ 5$ payable for 60 years, which, by the same. Table, is $£ 570.257$. ——In like manner; the amount at 5 per cent. of an annuity of $£_{50}$ for 40 years, payable balf-yearly, is the same with the amount at $2 \frac{1}{2}$ per cent. of an annuity of $\notin 25$ for 80 years, which appears to be $£ 6209.567$. The amount at 5 per cent.
 of the same annuity payable yearly, appears to be $\notin 6039.988$.

 Farther. The amount of $£ 10$ principal put out to yearly interest at 4 per cent. and forborne for 30 years, is (by Table III.) $\npreceq 32.433$. But if it is put out to 4 percent. balf-yearly interest, its amount will be the same with the amount of the same principal, bearing balf the interest in double the time; that is, it will, in the present instance, be the same with the amount of $£ 10$, bearing 2 per cent. interest in 60 years, which, by the Table last mentioned, appears to be $\not{ }^{2} 32.810$.
 These amounts can be thus determined from these Tables only, when the term for which they are wanted does not exceed 50 years, or 100 balf years.

 In order to find them for any longer term, the following method must be taken:
 "If the amount required is the amount " not of an annuity, but of a sum-find first "c the balf-yearly amount for 50 years; after " which find the balf-yearly amount of that " amount for the remainder of the term, and "this last will be the amount desired."

 ## EXAMPLE.

 Let the amount be required, at 4 per cent. of \mathscr{E}_{10} in 80 . years, supposing the interest payable balf-yearly.

 Ans.

 Ans. The amount in 50 years, determined in the manner just described, is 72.446 ; and the amount of 72.446 in 30 years, determined in the same way, is $\not{ }^{237.676}$, which is the amount required.

 This amount, supposing the interest payable yearly, is $£ 230.049$.

 But if the amount required is the amount of an annuity improved at any given rate of compound interest payable balf-yearly. it will be necessary, after finding the sum which is the amount for 50 years, to find the yearly interest that sum will carry at the given rate; and the amount for the remainder of the term, of this interest increased by the annuity, added to the amount for 50 years, will be the amount required.

 ## EXAMPLE.

 Let the amount be required, at 4 per cent. of \mathscr{E}_{10} per ann. in 80 years, supposing the annuity payable balf-yearly.

 Ans. The amount in 50 years (being the same with the amount of $£ 5$ per ann. in 100 years, at 2 per cent.) is, by Table IV. $£_{1561,116 . — \text { The yearly interest of }}$
 increased by $\mathscr{\mathscr { E }} 10$ makes $£_{72.446 \text {; and the }}$ amount of $£ 72.446$ per ann. payable balfyearly in 30 years (or of $£ 36.223$ in 60 balf years) is $£_{4620.96 \text {, which added to }}$ $£_{1561.116,}$
 $\mathscr{E} 1561.116$, makes $£ 6182.076$ the amount required.

 This amount, supposing the annuity payable yearly, is $\npreceq 5982.665$.
 N. B. These amounts for any given term and rate of interest are the same with the debts bearing that interest, which will be gradually sunk in that term by any given annuity appropriated to the redemption of the debt.-It appears, therefore, from the last example, that a sinking fund of a million per ann. never diverted would pay off, in 82 years, a public debt of 598 millions, bearing 4 per cent. interest, supposing it applied to that purpose yearly; but that if applied balfyearly, it would pay off, in the same time, a debt of 618 millions.

 These examples shew the method of finding, by the abovementioned Tables, the values at any rate of interest of annuities payable for any given terms, supposing them payable balf-yearly; and likewise the values of any sums payable at the end of any terms, supposing a balf-yearly instead of a yearly discount allowed. But in such cases, these Tables will be of no use, if the terms exceed 50 years, or 100 balf-years; and it will be necessary to have recourse to the theorems at the beginning of-the preceding chapter, by which, with the help of logarithms, it is easy, in all cases, to compute the difference between the values of annui-
 ties (including life-annuities) as they are payable yearly, half-yearly, or quarterly.

 With respect to life-annuities, it may be proper to observe here particularly, that their values deduced from the complements, that is, from twice the expectations according to any given table of mortality (by the rules in p. 221, and p.223), and payable balfyearly or quarterly, is the same with the values of balf or a quarter the annuities at balf or a quarter the yearly interest, deduced (by the same rules) from double or quadruple the complements: and that the difference between the yearly values and these balf-yearly or quarterly values added to the true yearly values according to the same table of mortality, will give, with almost perfect correctness, the balf-yearly or quarterly values according to that table.

 ## EXAMPLE.

 Let the different values be required of an annuity on a single life aged 50 , according as it is payable balf-yearly or quarterly, reckoning interest at 4 per cent. and the probabilities of the duration of life, as they are in Table XLV. Vol. II.

 Ans. The complement (that is, twice the expectation) by Table XLV. of a life aged 50 iss 36.92 The value of an annuity payable
 able yearly on a life at this age deduced at 4 per cent. from this complement, is by the rule in p. 221, 11.533.—The value deduced from double this complement (that is, of a life whose complement is supposed $\overline{j 3.84)}$) at 2 per cent. is 23.466^{c}, the half of which

 - In computing in this case, by the rule here referred to, it is necessary to find the value at 2 per cent. of an annuity certain payable for 73.84 years. This value (by the First Theorem in the preceding Chapter) is $50-\frac{1}{.02 \times 1.02}$ 73.84. By logarithms it is easy to find that $1.02{ }^{33} .84$ is 4.3154 ; and, consequently, that this expression is 38.416 , which multiplied, according to the rule in p. 221 , by 51 (the perpetuity increased by unity), and the product divided by 73.84 will give 36,533 , which quotient subtracted from 50 , (the perpetuity $)_{i 1}$ lqaves 23.466.

 In like manner; the value, by the same theorem, at i per cont. of an annuity certain for a number of years equal to four times the complement (that is, to 147.68 years) is $100-\frac{1}{.01 \times\left. 1.01\right|^{147.68,} \text {, which is equal to }}$ 76.994 ; and the product of 76.994 into 101 , divided by 147.68 , gives 52.654 , which, subtracted from 100 , leaves 47.345 , the quarter of which is 11.836 .

 It is necessary to add here, that in computing the yearly value of any life-annuity from the expectation by the rule in p. 221, the value of an annuity certain for a number of years equal to twice the expectation (or the complement) may be always taken from Table II. Vol. II. when the complement is any whole number of years; and also, that when it is not any whole number of years, it may be taken for the correspondent arithmetical mean between the two nearest yearly values in the Table. Thus; in the example given above, the value at 4 per cent. of an annuity certain for 3^{6} years, by Table II.
 is 11.733 ._The difference is .200. And this difference, added to 11.658 (the true value by Table XLVII. of an annuity payable yearly on the supposed life), makes 11.858 ; which is the true value of the annuity payable balf-yearly.

 The value of the same annuity deduced (by the rule in p.221) from quadruple the complement at 1 per cent.; that is, the value at 1 per cent. of a life whose complement is supposed to be 147.68 years, is 47.345 , the quarter of which is 11.836 . The difference between this value and 11.533 is .303 , which added as before to 11.658 , makes 11.961 , the true value of the annuity payable quarterly.

 In the same way the values are to be computed (by the second rule in p. 223) of annuities payable balf-yearly or quarterly on any two joint lives.

 If the annuity is a life-annuity ${ }^{f}$ secured OR
 is 18.908. The value for 37 years is $19.1 \mathbf{1}^{2}$. The difference is .234; and this difference multiplied by .92 (the fractional part of the complement) and added to the least of these two values, gives 19.123 for the value of an annuity certain for 36.92 ycars.

 The exact value by the first Theorem is 25 1
 $\overline{.04 \times \overline{1.07})^{; 6.92}}$, which is equal to 19.123 , and the same with the former value.

 on land, the value is to be computed by the directions in the preceding chapter. If tsuch an annuity is payable balf-yearly, as is most common, its value, in the present instance, will be 11.858 (the half-yearly value just determined) increased by the quotient of 19.206 (the value of an annuity certain and payable balf-yearly for a number of balf years, equal to four times the expectation or troice the complement; that is, 73.84) divided by four times the complement. This quotient is .130; and the value, therefore, is 11.989 .

 The following comparison, will shew, in some measure, what additions should be made, at all ages, to the yearly values of lifeannuities, on account of these different modes of payment.
 when the annuitant dies, nothing can be claimed for the time that has past since the last payment became due. If a payment proportioned to that time may be claimed; that is, if the annuity is payable to the last moment of life, it is called an amuity secured on land.

 ## TABLE

 Shewing the Additions to the Values of LifeAnnuities on account of their being payable balf-yearly, or quarterly, or balf-yearly and secured on Land.

 Interest 4 per cent.

 | $\begin{aligned} & \text { Table } \\ & \text { XLVII. } \end{aligned}$ | arly va-
 lue. | yearly value | Quarterly | $\begin{aligned} & \text { abo } \\ & \text { yea } \\ & \text { val } \\ & \hline \end{aligned}$ | Value secured by land and payable half-yearly. | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | 1018.891 | | . 127 | | | 19.085 | |
 | | | . 143 | | | | |
 | | | . 1 | | | | |
 | 14 | 14.216 | . 182 | | | | |
 | 501 | 85 | | | . 300 | | |
 | | | | | | | |
 | 70.783 | | . 2 | | . 333 | 6.204 | |
 | 754 | | | | | | |
 | terest 5 per cent. | | | | | | |
 | $\left\|\frac{4 \mathrm{ge}}{10}\right\|_{16}$ | | | | | | |
 | | | . 123 | 15. | , | | |
 | | 14.22 | | 14.29 | | | |
 | , | 12.7 | . 162 | | | | |
 | 10.63 | 10.8 | . 186 | | | | |
 | 8.1 | | 219 | 8.498 | . 31 | | |
 | 5 | | 22 | 5.835 | . 341 | | |
 | 4.345 | 4.57 | .230 | 4.692 | . 34 | | |

 These excesses are the same from whatever tables of mortality the yearly values are deduced.-They are also nearly the same (supposing equal yearly values) whether the yearly values are the values of single, or of joint lives, or of any number of lives.

 CHAPTER

 ## CHAPTER VI.

 ## Of Public Credit, and the National Debt.

 THE National Debt is a subject in which the public is deeply interested. Some observations have occurred to me upon it, which I think important ; and for this reason, though foreign to my chief purpose in this work, I shall beg leave to offer them to public attention.

 The practice of raising the necessary supplies for every national service, by borrowing money on interest, to be continued till the principal is discharged, must be in the highest degree detrimental to a kingdom, unless a plan is settled for putting its debts into a regular and certain course of payment. When this is not done, a kingdom, by such a practice, obliges itself to return for every sum it borrows infinitely greater sums; and, for the sake of a present advantage, subjects itself to a burden which must be always growing heavier and heavier, till-it becomes insupportable.

 This seems to be now the very state of this
 this nation. Af the Revolution, an æra in other respects truly glorious, the practice I have mentioned begun. Ever since, the public debt has been incteasing fast, and every new war has added much more to it than was taken from it during the preceding period of peace. In the year 1700 , it was 16 millions. In 1715 , it was 55 millions. A peace, which continued till 1740 , sunk it to 46 millions; but the succeeding war increased it to 78 millions; and the next peace sunk it no lower than 75 millions. In the last war it rose to 146 millions and a half. During a peace which has lasted now 10 years, it has been reduced to 138 millions: and at a sum not much less than this, it will, perhaps, be found at the commencement of another war, which may possibly raise it to 200 millions ${ }^{\text {g }}$. -One cannot reflect on this without terror.-No resources can be sufficient to support a kingdom long in such a course. 'Tis obvious, that the consequence of accumulating debts so rapidly, and of mortgaging posterity, and

 funding for eternity, in order to pay the interest of them, must, in the end, prove destructive. Rather than go on in this way, it is absolutely necessary, that no money should be borrowed, except on annuities, which are to terminate within a given period. Were this practised, there would be a limit beyond which the national debts could not increase; and time would do that necessarily for the public, which, if trusted to the economy of the conductors of its affairs might possibly never be done.

 This, therefore, is one of the proposals to which on this occasion, I wish I could engage attention. I am sensible, indeed, that the present burdens of the state would, in this case, be increased, in consequence of the greater present interest which would be necessary to be given for money : but I do not consider this as an objection of any weight. For let the annuity be an annuity for 100 years. Such an annuity is, to the present views of men, nearly the same with 'an annuity for ever ; and it is also nearly the same in calculation, its value at 4 per cent. being $24 \frac{1}{2}$ years purchase, and therefore only half a year's purchase less than the value of a perpetuity. Supposing, therefore, the public able to borrow money at 4 per cent. on annuities for ever, it ought not to give above 1s. 7d. per cent. more for money borrowed on annuities for 100 years: But should it be obliged to give a quarter, or even a balf per.
 cent. more ${ }^{\mathrm{h}}$, the additional burdens derived from hence, would not be such as could be very sensibly felt; and the advantages, arising from the necessary annihilation of the public debts by time, would abundantly overbalance them.

 These advantages would be, indeed, unspeakably great. By such a method of raising money, the expence of one war would, in time, come to be always discharged before a new war commenced; and it would be impossible that a state should ever have upon it, at any one time, the expence of many wars; or any larger debts than could be contracted within the limited period of the annuities ; and, consequently, it would enjoy the invaluable privilege of being rendered, in some degree, independent of the management of its finances by ignorant or unfaithful servants.

 I must add, that it is by no means necessary, that the limited period of the annuities should be so long as I have mentioned, or

 100 years; and that, at any time before the expiration of this period, the public might employ any surplus monies, in extinguishing part of the annuities, by purchasing them for itself at the market price; and thus it might aid the operations of time, and keep its debts within any bounds that its interest rendered necessary. Our government has, I know, in some instances adopted the plan now proposed; but it is to be wished that, instead of retracting ${ }^{i}$ it, as was once done, it had been carried much further.

 I am, however, far from intending to recommend this plan as the best a state can pursue. There is another method of gaining the same end, which is, on many accounts preferable to it. I mean, " by providing an "c annual saving, to be applied invariably, " together with the interest of all the sums " redeemed by it, to the purpose of dis"، charging the public debts: Or, in other "c words, by the establishment of a permanent " sinking fund."

 It is well known, that this plan has been also adopted by our government ; but, though capable of producing the greatest effects in the easiest and surest manner, it has never been carried into execution. It will abund-

 antly appear, from what follows, that this observation is just.

 Suppose the annual saving to be $\mathscr{£}_{100,000}$. This sum, applied noro to discharge an equal debt, bearing interest at 4 per cent. will transfer to the public, from its creditors, an annuity of $£_{4000 \text {. The annual saving, there- }}$ fore, would be increased to $£ 104,000$; and this saving would transfer to the public another annuity of $£_{4,160}$, and make the saving at the beginning of the 2 d year, to be $\not{ }^{108,160}$.-Thus, the original fund would go on increasing, at the same rate with money improved at 4 per cent. compound interest. -At the beginning of the 3 d year it would be $£_{112,486 \text {. At the beginning of the }}$ 18 th year, $£^{202,581}$. Of the 36 th year,
 -In 94 years, then, the natiort might be eased of above 4 millions per annum in taxes; and above 100 millions of its debts would be discharged, gradually and insensibly, at no greater expence than $£ 100,000$ per annum; and without interfering with any of the resources of government ; or making any other difference, than causing funds to be engaged for a course of time to the public, which would have been otherwise necessarily engaged to its creditors, and which, therefore, must have been entirely useless to it.

 It is an observation that deserves particular attention here, that on this plan, it will be

 ## 278

 of less importance to a state what interest it is obliged to give for money : For the higher the interest, the sooner will such a fund pay off the principal. Thus; a hundred millions borrowed at 8 per cent. and bearing an annual interest of eight millions, would be paid off by a fund, producing annually $£_{100,000}$ in 56 years; that is, in 38 years less time than if the same money had been borrowed at 4 per cent. k

 * What is here said, supposes the same fund applied
 to the discharge of debts bearing different interests. If to the discharge of debts bearing different interests. If different funds are applied, bearing to one another the same proportion with the interests of the debts which they are to discharge, the benefit derived from borrowing on lower rather than higher interests, will be reduced to almost nothing; for the disbursements of the public on account of all equal loans, will, in this case, be nearly the same.

 The following example will explain and demonstrate this:

 Let a million be borrowed at 3 per cent. and let a fund be charged with it, bringing in six shillings per cent. per ann.
 per ann. This surplus, unalienably applied, together with all the interests disengaged by it, will annihilate the prin, cipal in 81 years, as may be gathered from Table IV. in the next volume. And the disbursements, on account of the loan, will be 81 multiplied by $\mathfrak{E} 33,000$; that is, $\mathscr{E}_{2}, 673,900$. Let us suppose again, a million borrowed at 6 per cent. and let a fund be charged with it, producing a surplus of twelve shillings per cent. per ann. such a fund, besides paying the interest, will discharge the principal in 41 years; and the disbursements, on account of the loan, will be $£ 66,000$ multiplied by 41 ; that is, $\mathfrak{E}^{\prime} \dot{2}, 706,000$, or nearly the same with the disbursements on account of an equal loan at 3 per cent.

 - It follows from hence, that reductions of interest would on this plan, be no great advantage: to a state. They would, indeed, lighten its present burdens; but this advantage would.be, in some measure, balanced by the addition which would be made to its future burdens, in consequence of the longer time during which it would be necessary to bear them.-I mean this on the supposition, that the savings produced by reductions of interest, are immdiately applied to the relief of the state, by annihilating taxes equi-. valent to them. But if that is not the case; and if, likewise, there is either no plan established for putting the public debts into a certain course of payment, or it is not faithfully carried into execution; in these circumstances, reductions of interest may prove hurtful. For, first, They would only furnish funds for contracting further debts, and with more money for supplying the deficiencies arising from profusion and bad management. And, secondly, As, in such circumstances, they would only retard, and not prevent the increase of the burdens occasioned by the public debts, a period would. come when the affairs of the state would get near to a crisis; and at such a period, its danger would be increased, in proportion to the reductions of interest that had been made.

 In order to understand this; let us suppose that a debt, bearing an annual interest of five millions, is the whole debt which a state can bear without being so much oppressed as
 to be near sinking. Let it, however, be supposed to have still some last resources left, which may enable it to bear, for 23 years ta come, this load, together with every additional load, which, during this time, may be necessary to be thrown upon it.-Let it further be supposed, that at this time, the state urged by the fear of an approaching bankruptcy, resolves upon entering into some effectual measure for preserving itself._ Certain it is, that in such circumstances, no measure so effectual can be pursued, as the establishment of a sinking fund, and such a faithful application of it as I have explained. Let that then be the measure entered upon; and let the state be supposed capable of providing a fund, producing a million annually, If all the debts bear interest at 6 per cent. this fund would pay off three-fifths of them, within the time I have mentioned; or, in 23 years; and the state might be saved. But if, in consequence of reductions, they bear interest at no more than 3 per cent. the same fund would not give the same relief, in less than double that time; and therefore, a bankruptcy might prove unavoidable ${ }^{1}$.

 I wish I could think, that there is nothing in this representation, that can be applied to, the present state of this nation. The interest of the public debts has been reduced, at dif-

 ferent periods, from 6 to 5 , from 5 to 4 , and from 4 , to 3 per cent. ; but still they have grown with rapidity; and we now see owrselves overloaded, and in no way of gaining relief. Had there been no reductions of interest, we should, indeed, have been in the same condition sooner ; but, we might have been relieved also sooner, and with less dif. ficulty and danger.

 In short. Reductions of interest are ad. vantageous chiefly when made to gain additions to such a sinking. fund as I have de-, scribed. - When made withother views, they are only palliatives, which give present relief by increasing future danger; or expedients which postpone a public bankruptcy, by rendering it a calamity more unavoidable and dreadful. As managed therefore among us, they have been indeed the effects of too narrow a policy, and deserve none of the encomiums which have been bestowed upon them. The preceding observations prove this sufficiently; but there is one farther proof of it which I cannot help mentioning. Suppose $£ 200,000$ per annum to have been gained in 1716 , by the reduction which was then made of the 6 per cents: to 5 per cents.; or, in other words, by saving 1 per cent. per annum on a capital of 20 millions. This saving, in consequence of being applied unalienably in the manner I have represented, to the payment of the public debts, would, in 37 years, have discharged a debt of $\neq 20,325,000$, bearing 5 per cent. interest.

 But if applied every year to current services, in order to avoid levying new taxes, the benefit derived from it in the same period would be 37 times $£^{200,000, ~ o r ~} £_{7,400,000 ;}$ but at the same time, a debt would have been continued of 20 millions, which must have been otherwise paid. The effect, therefore, in this case, of the reduction, would be to prevent an incumbrance on the public of $£^{200,000}$ per ann. by leaving upan it an incumbrance of a million per ann. rendered more difficult and unlikely than ever to be removed ${ }^{\mathrm{m}}$.

 But

 But to return to the subject I have principally in view.

 What I have said implies, that a state al, ways discharges its debts, whatever interest they bear, by paying the original sum borrowed. It may, perhaps, be imagined, that when a loan is under par, it may be discharged at a less expence. But this is by no means so practicable as it may seem; for it should be considered, that a public loan, now under par, would not long keep so, after being put into a course of payments : And for this reason, as a state can never be obliged, in redeeming its debts, to pay more than the original sum borrowed, so neither ought it to
 on Civil Liberty, Part II. Sect. III. and particularly in the Supplement to that Tract, where regulations are proposed for raising the value of stocks bearing higher interest than 3 per cent. in order to avoid the necessity of offering high premiums and creating artificial debts.The following example will shew what occasion there is for some such regulations.-The 3 per cent. stocks were (Oct. $25^{\text {th }}, 1781$,) at $55_{4}^{\frac{1}{4}}$; and the price of the 4 per cent. stocks, which, in order to bear a proportionable price, ought to have been $73 \frac{3}{4}$, was (deducting a fortnight's interest) $70 \frac{5}{8}$. One per cent. added to make a five per cent. stock, would have been still more undervalued; and such a stock; even with the advantage of being declared irredeemable for 15 or 20 years, would not probably have sold for more than $£ 82$, or $\neq 83$. Had, therefore government attempted to borrow by offering 5 per cent. it could not have succeeded without giving a premium of near $£^{2} 20$ for every \mathfrak{E}_{100} advanced. But, by such regulations as those proposed in the Supplement to which I have just referred, it would, I imagine, have become practicable to borrow at interests corresponding nearly to the prices of the 3 per cents. without premiums.
 expect, in general, to be able to redeem them by paying less. I have said, in general; for I am sensible that, at the beginning of the operations of a fund, when its produce is omall, and also in a time of war, a state might derive great advantages from the low price of its debts. And I am sensible also, that considerable advantages might be derived from lotteries, in paying the public debts: But lotteries do great mischief in a state, by fostering the destructive spirit of gaming. It is wretched policy to make them familiar, by recurring to them in the ordinary course of government. There are great occasions on which they may be necessary, and for such occasions they should be reserved.

 The advantages of puting the public debts into such a course of payment as I have described, are scarcely to be imagined. It would give a vigour to public credit, which would enable a state always to borrow money easily, and on the best terms. And the encouragement to lenders might be always improved, without any inconvenience, by making every loan irredeémable, during the first 20 or 30 years; for, there could seldom be any occasion for beginning to discharge any one loan sooner.

 It might be easily shewn; that the faithful application, from the beginning of the year 1700 , of only $£ 200,000$ annually, would long before 1790, notwithstanding the reductions
 of interest, have paid off above a hundred millions of the public debts. The nation might, therefore, some years ago, have been eased of a great part of the taxes with which it is loaded. The most important relief might have been given to its trade and manufactures; and it might now have been in better circumstances than at the beginning of the last war; its credit firm ; respected by foreign nations, and dreaded by its enemies. A new account might also some years ago have been begun; and another fund, not much more considerable, applied in the same way, would, in a short course of years, have paid all that would have been now unpaid of our debts. And thus, without any expence that could be sensibly felt, its debts, as soon as they began to grow heavy, might have been constantly reduced to a balf, or a third; and not only all danger, but all considerable inconvenience from them prevented.

 All I have now said, supposes a single fund with a general appropriation to the payment of the public debts. The same ends might be answered by particular funds, with small surpluses, appropriated to particular debs. In the wars of King William and Queen Aine, an interest of six, and sometimes seven and eight per cent. was given for loans. It would have been easy to have annexed to each loan a fund producing a surplus of $£_{1}$ per cent. after paying the interest; and such a surplus would have been sufficient to annihilate the principal
 principal of every loan in 33 years. Had this plan been followed, the disengagement of the public funds, and the relief attending it would have begun 60 years ago ; and the debts contracted, during the reigns of King William and Queen Anne, would have been all cancelled near 30 years ago, without any of that trouble, tumult, and distress, which have been occasioned by reductions of interest, and by the various schemes which have been tried for lessening the debts ${ }^{n}$.A fund, yielding $£_{1}$ per cent. . surplus, annexed to a loan of 5 per cent. would discharge the principal in 37 years ${ }^{\circ}$. At 4 per cent. in 41 years. At 3 per cent in 47 years.

 These observations relate only to what might have been the state of the nation with respect to its debts, had a right plan been pursued from the first. But it will be asked, What can be done with them as they are? I wish I was able to give a more satisfactory answer to this enquiry. Every one must see
 n The sums to be laid out would, in this case, be so small at first, that it would be proper to employ them in purchasing part of the loan to be annihilated at the prices in the public market; and this, as far as it can be carried, is the most easy and quiet and silent way possible of extinguishing the public debts.

 - I have all along supposed the produce of the public funds to come in yearly. The truth is, thit it comes in half-yearly; but this gives no advantage in the payment of the public debts worth taking into account. £1 per annum, together with its growing interests, at 4 per cent. taken yearly out of $£_{100}$, will reduce it to nothing in 4^{1} years; if taken half-yearly, it will annihilate the same capital only four months and 12 days sooner.
 our prospect to be discouraging, and our state hazardous. Some have thought, that a good method might be found out of discharging the national debt, by short annuities, and lifeannuities. The following observations will shew how groundless an imagination this is.

 Short annuities and life-annuities have been always undervalued by the public; and were they offered to sale to such an amount as would be necessary to make any considerable reduction in the national debt, they would probably fall to a very low price. Let the three per cent. stocks be supposed at 86 . $£ 100$ of this stock would not be given up for a life-annuity less than $£ 6$, or a short annuity for a less term than 30 years ; for this is valuing them at $14 \frac{1}{3}$ years purchase, and life-annuities in particular have never yetbeen disposed of at so high a price.-In order, therefore, to discharge in this way a capital in the 3 per cent. annuities of 33 millions. and a third (the interest of which is a million per ann.) it would be necessary to provide a surplus producing another million per $a n n$. for 30 years. But this surplus, employed during the same time as a sinking fund, would redeem 47 millions and a half at par, and 51 millions and a half at $£ 86$ in money for every $\not £_{100 \text { stock. It would, }}$ therefore, be great folly to employ such a surplus in the former way rather than the latter.

 But I will beg leave to detain the reader here a little longer-The observations now made may be of use in shewing what the
 best method is of incurring debts as weil as redeeming them.

 Suppose a million raised by annuïties on a set of lives, all at 30 years of age. The purchasers of such annuities cannot reasonably be reckoned to have an expectation of less than 30 years. That is; the duration of their lives, taking them one with another, will be 30 years; and they will be entitled, supposing interest at 4 per cent. to £ 7 per ann. for every $£_{100}$ advanced. For a million then, the public would make 30 payments of $\neq 70,000$.-Let us suppose next, that a fund producing this sum annually, instead of being engaged to pay these life-annuities, is engaged for 30 years, to pay the principal and interest of a million, borrowed on redeemable perpetuities, at 4 per cent. There will, at the end of the first year, be a surplus of $£_{30,000 \text {.-In consequence of ap- }}$ plying this to the extinction of the principal, it will be reduced to $£_{970,000 \text {, on which, }}$ at the end of the second year, the interest due will be $£ 38,800$. There will, therefore, be a saving of $£_{1200 \text {. Instead of employing }}$ this saving in further sinking the principal, which would cause the fund to accumulate in the same manner with money at compound interest, let it be taken and employed in any other way: And let the same be done with all the subsequent savings, reserving only $£^{30,000}$ annually, for the purpose of sinking the principal. At the end of the second year, the principal will be $£ 940,000$; and
 and the saving of interest upon it, at the end of the third year, $\not 24000$. At the end of the 30th year, the principsl will be reduced to $£_{100,000 \text {. The saving of interest that }}$ year will be, $£_{1200}$ multiplied by 29 , or $\mathscr{E}_{34,800 \text {, and the sum of all the savings will }}$ be $£ 522,000$. Deduct from hence $£_{100,000}$ remaining then undischarged of the principal; and $£_{422,000}$ will be the loss the public would sustain in the circumstances I have supposed, by raising money on life-annuities. But if we suppose the savings, as they arise, as well as the constant sum of $\mathscr{£} 30,000$, to be applied to the discharge of the principal, instead of being spent on current services; the whole million will be annihilated in 21 years and a half; and the loss to the public by preferring life-annuities, will be $8 \frac{1}{2}$ years purchase of the annuities; or $£ 595,000$. By similar deductions it may be easily found, that the loss, in younger lives, is greater; in older lives less ; but never inconsiderable, except in the oldest lives.

 It appears, therefore, that in consequence of such a way of raising money, the public must always pay much more in interest than. there is any occasion for; and waste a sum equal to more than half the principal borrowed P . This, however, though so wasteful,
 > voz. I.

 \square
 ${ }^{p}$ It is obvious, that the observations here made, may be applied to the common methods of raising money on life-annuities, for building churches, paving streets, making navigations, \&c. \&c. And, in general, to all cases
 is a more frugal way of procuring money than by borrowing on perpetuities, without putting them into a course of redemption; for in this case the loss may be infinite. But to return.
 The enquiry which has occasioned this digression, must be interesting to every person who wishes well to this country. All
 where the money received is not laid up to be improved. -For, to view this subject in another light, let us suppose $£_{10,000}$ borrowed for any public work, on perpetuities at 4 per cent. And, if that will afford more encouragement, let them be made irredeemable for any number of years less than seventeen. Let us further suppose such rates, or tolls, established for the payment of the interest and principal, as shall produce double the interest of the sum borrowed; or $\mathfrak{E} 800$ per annum instead of $\mathfrak{E}_{400 \text { per annum. Let the surplus, as it comes in half- }}$ yearly, be laid up to accumulate in the public funds. In 17 years and a half, reckoning interest at 4 per cent. a capital will be raised, equal to the whole sum borrowed; and, therefore, at the end of that time, the whole debt may be discharged, and the whole transaction finished.But if the same sum had been borrowed on annuities, for the lives of a set of persons 50 years of age, at 8 per cent. which is \mathscr{E}_{1} per cent. less than the true value of such annuities: Had this, I say, been done, half the annuitants would have been alive at the end of the term I have mentioned; and the whole transaction, together with the expences and trouble attending the management of it, could not have been finally closed till the extinction of all the lives; that is, not in less time, most probably, than 35 or, perhaps, 40 years.-It is a necessary observation here, that, if public credit maintains its ground, much will not depend, in the plan now proposed, on the rise and fall of Stocks. If a war sinks them, the money laid out, while the war lasts, will accumulate faster. If a peace raises them, the money that had been previously laid out will be proportionably increased.
 schemes for discharging the public debts by life-annuities, have been shewn to be absurd and extravagant. In general it may be observed, that it is far from probable, that any money which the nation can spare, if applied so as to bear only simple interest, can be capable of reducing its debts within due bounds; or of doing us, in our present circumstances, any essential service. A fund, producing a surplus of even two millions annually, would, when thus applied, pay no more than 40 millions in 20 years; and, in that time, a war might probably come, which would interrupt the application of it ; and increase our debts much more than such a fund had lessened them.

 Certain it is, therefore, that if our affairs are to be retrieved, it must be by a fund increasing itself in the manner I have explained. The smallest fund of this kind is, indeed, omnipotent, if it is allowed time to operate. But we are, I fear, got so near to the limits of the resources of the nation, that it cannot be allowed much time: And, in order to make amends for this, it is necessary that it should be large.

 In redeeming the public debts, considerable advantages might be derived from their low price, and this advantage, in a time of war, would be nearly the same in whatever manner the redemption was made: That is, whether it was always made at par, or at the market prices below par. The latter method
 would be the best; but supposing the former adopted, an equivalent advantage would arise from the power it would give to borrow money on lower terms.-Suppose, for instance, that in a time of war, four millions must be borrowed for the service of the year; and let the produce of the fund be then increased to two millions; and the interest of money in the stocks, above 4 per cent. In these circumstances, it would be the interest of the lenders of money, to take $3_{2}^{\frac{1}{2}}$ per cent. for the sums they advanced, in consideration of having their 3 per cents. paid off at par, to the amount of half these sums.-War, therefore, would accelerate the redemption of the public debts; and it would do this the more the longer it lasted, and the higher it raised the interest of money. Or if, in consequence of paying always at par, this could not happen; an equivalent effect would be produced in the way just mentioned. The stocks would be always kept up by the operations of the fund ; and, in proportion to the sums yielded by it, the public would be able to borrow money more advantageously, and less would be added to its burdens.-This seems to me an observation of particular consequence. It demonstrates, that the invariable application, in war as well as peace, of the produce of the fund I am supposing, to the payment of the national debts,' rather than to any current services, would, independently of its
 effect in redeeming these debts, be attended with great advantages to the public. But this is a subject on which I shall have occasion to say more presently.

 The sinking fund, in its present state, and, after supplying the deficiencies of the peace establishment, yields, I suppose, a considerable part of a million and a half per ann.q. And I cannot doubt but that such savings. might be made in the collection and expenditure of the national revenue, as would cause this fund to yield the whole of this sum, without imposing any new burdens on the public. But, were there, indeed, no way of providing any part of it, but by creating new funds, or imposing new taxes; it ought to be done, because it must be done, or the nation sink. *

 The evils and dangers, attending an exorbitant public debt in this country, are so great, that they cannot be exaggerated.Without repeating, what has been so often

 said, of its increasing the dependance on the crown; rendering us tributary to foreigners; and raising the price of provisions and labour; and, consequently, checking population, and loading our trade and manufactures; I will only take notice of the following evils which attend it.

 First. The execrable practices of the Allcy. These cannot be mentioned in language too strong. They are increasing every day; and the national debt, by giving occasion to them, is likely soon (with the aid of annual lotteries) to ruin all honest industry among us, and to turn us into a nation of gamblers.

 Secondly. It must check the exertions of the spirit of liberty in the kingdom. The tendency of every government is to despotism ; and in this it must end, if the people are not constantly jealous and watchful. Opposition, therefore, and resistance, are often necessary. But they may throw things into confusion, and accasion the ruin of the public funds. The apprehension of this must influence all who have their interest connected with the preservation of the funds, and incline them always to acquiescence and servility.

 But further. It exposes us to particular danger from foreign enemies by inviting insults, and rendering us incapable of meeting war, however necessary, without the hazard
 of bringing on terrible convulsions, by overwhelming public credit.

 All these are evils, which must increase with évery increase of the national debt ; and there is a point at which, when they arrive, the consequences must be fatal ${ }^{\mathrm{r}}$.

 But to proceed to some further observations.

 What has been said, has all along supposed a sacred and inviolable application of the fund I have described, and of all its earnings, to the purpose of sinking the national debt. The whole effect of it depends on its being allowed to operate, without interrupTION, a proper time. But it may be asked, how this can be secured? Or, by what method an object, that must be continually growing more and more tempting, can be defended against invasion and rapine?-I might here mention the superintendency and care of the representatives of the kingdom,

 the faithful guardians of the state, to whom ministers are responsible for the use they make of the public money. But experience has shewn, that we cannot rely on this:secu-rity.-The difficulty, therefore, now mentioned, is the very greatest difficulty the nation has to struggle with in the payment of its debts.

 The sinking fund was established in the year 1716, or soon after the accession of the present family, at a time when the public debts, though not much more than a third of what they are now, were thought to be so considerable as to be alarming and dangerous. It was intended as a sacred deposit never to be touched; the law which -established it declaring, that it was to be applied to the payment of the principal and interest of such national debts and incumbrances, as had been incurred before the 25 th of December 1716; and to no otber use, intent, or purpose whatever.-The faith of parliament, therefore, as well as the security of the kingdom, seemed to require, that it should be preserved carefully and rigorously from alienation. But, notwithstanding this, it has been generally alienated; and the produce of it employed, in helping to defray such current expences as the exigences of the state rendsred necessary.

 In order to justify this, it has been usual to plead, that when money is wanted, it makes no difference, whether it is taken from hence,
 hence, or procured by making a new loan. But in truth the difference between these two methods of procuring money is no less than infinite.-For, by employing the sinkING FUND in bearing current expences, rather than borrowing new money on new funds; the state, in order to avoid giving simple interest for money, is made to alienate money, that must have otherwise been improved at compound interest ; and which, in time, would have necessarily increased to any sum.-Had a faithful use been made from the first, of only one THIRD of the produce of this fund, the greatest part of our present debts would now have been discharged s.Can it be possible then to think, without the deepest regret, of that misapplication of this fund, which, with the consent of parliaments always complying, our ministers have practised ?

 - The principal observations in this Chapter, I have given just as they occurred to my thoughts, without knowing that any of them had been made by other writers. Some proposals and observations of a similar nature, I have since found in an excellent pamphlet published in 1726, entitled, An Essay on the National Debts of this kingdom, wherein the importance of discharging them is considered; and some general mistakes about the nature and efficacy of the SInking FUnd examined and removed. In a Letter to a Member of the House of Commons. Fourth edition.

 ## SUPPLEMENT.

 THE following account of our Public Funds in general, and of the Sinking Fund in particular, having been, published in another work too incorrectly, I have thought proper to introduce it here as a Supplement to the preceding Chapter.

 The British Funds have been all formed into the four following classes or divisions.The Aggregate Fund; the South-Sea Fund; the General Fund; and the Sinking Fund.

 The Aggregate Fund was established by an act of Geo. I. cap. 12. in 1715. It had this name given it, because it consisted of a great variety of taxes and surplusses of taxes which were in that year consolidated, and given as a security for the discharge of the interest and principal of debts due to the Bank of England, and some other public debts ; and also for the payment of $£_{120,000}$ per annum to the civil list. Into this fund were brought the two-thirds and one-half subsidy of tonnage and poundage; half the inland duties on tea and coffee ; the housemoney granted by the 7th of Will. III.; the duty on hops; the duties on low wines, brandy, and British spirits; all arrears of land-taxes; all public monies not appropriated; the surplusses of the nine-penny
 excise,
 excise, of the five-sevenths of the Bank ninepenny excise, of the revenues in the annuity acts of the 4 th, 5 th, and 6 th of Queen Anne, \&c. and, by an act of the 1 st of Geo. III. all the duties constituting the revenue of the civil list.

 The South-Sea fund was established, by stat. 3 Geo. I. cap. 9. in 1716 ; and was so called, because appropriated to pay the interest of the South-Sea company's capital. It consisted of a duty on candles, and certain imposts on wines, vinegar, tobacco, and East-India goods.

 The General Fund was also established, by stat. 3 Geo. I. cap. 7. in 1716, and consisted of a subsidy on goods exported; a tax on hackney-coaches and chairs; duties on soap, hides, stamps, and policies of insurance; $£ 700$ per week letter-money; a moiety of the inland duties on tea and coffee; and $£_{3} 9,855$ per annum out of the hereditary excise on beer for the bankers annuities. All these taxes were appropriated to the discharge of the interest of $£ 7,808,087$, (originally $\not{ }^{£ 10,000,000,}$) capital stock of SouthSea annuities, together with charges of management.

 All that remained of the produce of the taxes thus digested into these three funds, after satisfying the charges upon them, was in the same year (or 1716) carried into a fourth fund, to which was given the name of the Sinking Fund, because appropriated
 to the purpose of sinking the public debts. The words of the act of the 3 d of Geo. I. which established this fund, are, "All the " monies to arise from time to time, as "s well of the excess and surplus of an act " made this session for redeeming the funds "، of the Bank of England; and of the ex" cess or surplus by virtue of one other act " made likewise this session for redeeming " the funds of the South-Sea company ; as "، also, of the excess or surplus of the du" ties and revenues by this act appropriated " as aforesaid; and the overplus monies of " the said General Fund by this act esta" blished, shall be appropriated to the dis" charging the principal and interest of " such national debts as were incurred be" fore the 25th of December, 1716, and cc are declared to be national debts; and to " or for no other use, intent, of purpose " whatsoever." The transactions with respect to this fund make a very important part of the history of Britain; and furnish us with a striking instance of the depravity and folly which often ruin kingdoms.

 Before its establishment there had existed many smaller funds of the same nature; that is, such duties or taxes had been provided for paying the interests of particular loans, as afforded surplusses by which the principal itself was to be gradually redeemed. This was the common practice in the reigns of King William and Queen Anne. Most of the public
 public duties were given for terms of years; and at the end of those terms they ceased of course, , unless continued for farther terms by new acts of parliament : And, in general, it was provided, when any money was raised, that the principal should be cancelled either by time, as in the case of the sale of long and short annuities, or by the surplusses of the duties charged with the payment of the interest. This was an excellent plan; but it was by no means carried into execution. In the jear 1720, most of the long and short annuities were converted into redeemable perpetuities, at the expence of above three millions; and the surplusses of the duties charged with particular loans were often so broken into, by being either charged with new loans before they had cancelled the old, or spent on current services, as to be rendered incapable of answering the end intended by them. In consequence partly of this bad management, the public debts at the accession of the House of Hanover were so much increased as to be generally reckoned insupportable; and their reduction was made one of the first objects of parliamentary attention. This gave rise, in 1716, to the institution of the fund of which we are giving an account, the father of which was (as has been generally said) Sir Robert Walpole, but, in reality, Earl Stanbope. All the taxes, except the land-tax and six-pence
 per bufhel malt-tax ${ }^{\text {t }}$, were then made perpetual, and distributed into the three funds which have been described, the surplusses of which, for ever afterwards, were to be held sacred, and to be applied intiolably, according to the words of the act just recited, to the redemption of the national debt.

 A considerate person might have suspected, that the same causes which had rendered former partial appropriations ineffectual, would destroy the efficacy of this. There seemed, however, to be reason for hoping the contrary : For,

 First, the future happiness and glory of the kingdom were thought to depend " on this appropriation; and the law which established it was declared to be a fundamental law of the realm.

 Secondly, in conformity to these sentiments, the words of this law were made as strong as possible; and, in order to give

 additional force to $i t$, a repetition of i, in the same words, was inserted in an act of the 5 th of Geo. I. cap. 3. Particular notice should be taken of these words. They order that all the surplusses of the taxes then made perpetual, shall be applied to the discharge of the public debts, and " to no other use or "" intent whatever." When, therefore, a debt had been paid off, the addition arising from that payment to the surplusses (or the annuity disengaged by it) became a part of the fund, and, together with it, was to be employed in discharging farther debts. And the same being true of every successive annuity disengaged by every payment, the fund, if never misapplied, must necessarily have operated in sinking the public debt, in the same manner that money accumulates, when put out to bear compound interest. And in this way this fund did in fact operate for a few years. While in its infancy, it was watched with great care. The improvement and the inviolable application of it was recommended in most of the speeches from the throne, and echoed back in the addresses of the House of Commons. It is particularly observable, that so well did our ministers then understand the nature and importance of this fund, that rather then encroach upon it, they frequently borrowed money in order to defray the necessary expences of government. From some publications in 1726 it appears, that some persons had been led to apprehend
 apprehend this zeal of the ministry would not be permanent, because it was not their interest to pay off the public debt, on account of the dependence and influence created by it. In answering this objection, the writers on the side of the court called such an apprehension an indecent jealousy, and took upon them to assure the public, " that in no "، possible exigence of affairs could our mi" nisters ever approve of or recommend the " alienation of the sinking fund." Happy would it have been for Britain had this proved true: But in a little time it appeared, that the apprehensions which had been stiled indecent jealousies, were too well grounded. Men in power came soon to see, that this fund was advancing too fast in its operations, and to change their zeal for it into a resolution to destroy it. . This will abundantly appear from the following facts.

 Charging the income of the sinking fund with the payment of the interest of new loans, is an encroachment upon it, no less subversive of its efficacy, than depriving it of gross sums; there being no difference between taking from it the annual interest of a sum, and that sum itself. Between the years 1727 and 1732 several incroachments of this kind had been made upon it ; but, being of a less obvious nature, they passed without any particular opposition. The finishing blow was given in the year 1733. In that year, in order to keep the land-
 land-tax at one shilling in the pound, it was necessary either to borrow half a million for the current service, or to take half a million from the sinking fund. The last method was chosen ; and proposed by Sir Robert Walpole to the Hause of Commons. Long and warm debates ensued. A proposal to alienate, in a time of profound peace; a fund which the law had made sacred, and the alienation of which no possible exigence of public affairs could justify, only for the sake of keeping the land-tax for one year at one shilling in the pound, justly kindled the indignation of the patriotic party. They urged the prohibition of the law, the faith of parliament, and the security of the king. dom. The proposer of the alienation was reminded of his inconsistency and treachery, in endeavouring to beat down that very monument of glory which he had boasted of having erected for himself; and Sir Jobn Barnard warned him, that he was drawing upon himself, the curses of posterity. But all arguments were vain. The ministry pleaded that the landed interest wanted ease; that there was no occasion for being in a .hurry to pay the national debt; and that the circumstances of the kingdom had altered so much since the establishment of the sinking fund, that the competition then among the public creditors was, not who should be first, but who should be last paid. Thus vol. I.

 X
 argued,
 argued, among others, Sir Robert Walpole. His reasons prevailed; and the House of Commons consented.

 The practice of alienating the sinking fund having been thus begun, went on of course. In the next year, or $1734, £_{1,200,000}$ was taken from it. In 1735, and 1736, it was anticipated and mortgaged.

 Thus expired, after an existence of a few years, the sinking fund; that sacred blessing (as it was once thought) and the nation's only hope. Could it have escaped; it would long before this time have eased Britain of all its debts, and left it safe and happy.

 In order to obtain a juster sense of this, let us here compare what it roould have done had it never been misapplied, with what it bas done.

 Though the act that established it was passed, as already said, in 1716 , it did not begin its operation till 1719, when three quarters of a million in old Exchequer bills were paid off with it. The intermediate time had been employed in laying the foundations of this fund, and providing an income for it, by a general reduction of the public debts, from an interest of six per cent. and other higher interests, to five per cent. What made this reduction then practicable was a rapid fall of the interest of money, which begun (in consequence of an increase of trade producing an influx of
 money)
 money) a little before the accession x . The means used by government for accomplishing this reduction were, first, the addition (at Micbaélmas 1717) of the interest of some debts bearing five per cent. to the principal, in order to make use of the produce of the taxes which should have paid that interest, in discharging the bankers debt and some other debts bearing six per cent.

 Secondly, loans at five per cent. obtained chiefly from the Bank and the Soutb-Sea company; to pay off such of the public creditors as did not chuse to accept a lower interest than six per cent.

 After this reduction, the three funds, before described, produced a surplus of above half a million per annum. In 1727 this surplus was increased to $\mathscr{E} 939,103$, and in 1733 (the year when the practice of alienating it begun) it had been increased so much by the redemptions made with it, and by a second reduction of interest in 1727 from five to four per cent. that its medium for five years had been $£_{1,212,000}$ per annum. Had it, from the year 1732, been allowed no increase beyond this sum (except from the interest of debts paid by it), and been applied for the first twenty-five years to the payment of debts bearing fout per cent. interest, and afterwards to the pay-

 ment of debts bearing three per cent. it would (in the year 1781) have completed the redemption of more than one hundred and sixty millions of debt, leaving the public during this whole period, in possession of all the surplusses which have arisen in the revenue beyond $£_{1,212,000 \text {, except those }}$ produced by redemptions. It is not possible to conceive the beneficial effects with which this would have been attended, or the vigour which would have been all along given to public credit by such a fund, and by the prospect it would have given of the total annihilation in a few years of all the public debts, and the disengagement of the taxes supporting them. No person who duly attends to this, and wishes well to England, can avoid execrating the policy which first produced, and has since continued, the alienation of the sinking fund; and converted an expedient for saving the kingdom, into a supply for extravagance, and a support, of corruption and despotism. This, however, is a policy which it may be expected men in power will always use when they can; for few of them (except when well watched) have ever shewn themselves superior to the remptations of power, or virtuous enough to a void using all means to extend it.

 Many schemes of different kinds have been formed for paying the public debts; and certain it is, that nothing can be of more importance. But the nature of things
 doth
 doth not admit of any method of doing this so expeditiously and effectually as an unalienably sinking fund; for in such a fund (it has been shewn) money is improved at compound interest, and therefore in the most perfect manner. The writers, therefore, who have employed themselves in contriving such schemes might have spared their labour. The best of all schemes has been long known and established, and received all the weight and efficiency which could be given it by the most solemn acts of the legislature. But no legislature can give security against itself. No parliament can do any thing which it may not undo.

 We have now seen what the sinking fund would have done, had it suited the views of the British ministry in 1733 to suffer it to go on with its operations. Let us next compare this with what it has done.

 In 1737 and 1738 , a million of the stock of Bank annuities and two millions of the stock of South-Sea annuities were redeemed with it. For twelve years after 1738, it was wholly applied to the current expences of every year. In 1749, the interest of near fifty-eight millions of the public debts was reduced from four to three and a half per cent. interest for seven years, and afterwards to three per cent. for ever. But notwithstanding the great addition which this third reduction of interest made to the sinking fund, no more than three millions of the pub-
 lic debts were redeemed by it, during the interval of peace betiween the years 1748 and 1756.

 By an act of the 25th of Geo. II. 1752, a change was made in the sinking fund, which it is necessary to mention.

 Before this act the sinking fund consisted only of the clear surplusses of the aggregate, the general, and the South-sea company's funds. By the war, which begun in 1740, there was an addition made to the public debts of near thirty-two millions. This occasioned a great increase of taxes; and the practice was, whenever any new tax produced less than the interest with which it was charged, to make good the deficiency out of the sinking fund, and afterwards to replace the sum taken from it out of the supplies for the following year. But whenever a tax produced more than the charge upon it, the overplus, instead of being carried to the sinking fund, was made a part of the supplies for the year. By the act just mentioned, all the nero taxes, together with all the annuities to the payment of which they had been appropriated, were ordered to be carried into the sinking fund, and formed into one general account. Most of the new taxes having proved deficient, this fund at first lost more than it gained by the change. But the loss was afterwards more than made up; first, by the saving which was produced by the reduction of interest from three and
 and a half per cent. to three per cent. in 1757; and, secondly, by the addition, in the same year, of the salt-duties to this fund, after they had completed the redemption of a million, with which they had been charged in 1745 .

 The war which began in 1756%, added seventy-one millions and a half to the public debts. This produced a new increase of taxes, which (in conformity to the consolidating act just mentioned) were brought to the general sinking fund account, together with the annuities or interests with the payment of which they were charged. And it had been, till the last war, the constant practice to carry every new fund or tax, imposed for paying the interest of a loan, into the sinking fund; in consequence of which this fund gained when the tax happened to produce more, but lost when it produced less than the interest which it had been given to pay. The sinking fund, therefore, which, before the consolidating act, consisted only of the surplusses of the aggregate, general, and South-sea company's funds, consisted afterwards of the clear surplus of all the appropriated taxes. There was only one exception; namely, the additional tax upon houses and windows, granted in 1758 , towards paying the interest of four millions and a half then borrowed. This tax was never made a

 part of the sinking. fund; and, having always proved deficient to the amount of about $\not £_{43,000}$ per annum, the deficiency was constantly made good by the sinking fund, and afterwards replaced from the supplies.

 Before the last reduction of the interest of the public debts, the sinking fund, having suffered greatly from various encroachments upon it, produced little more than a million per ann. But after this reduction, and its increase by the addition of the salt-duties, it produced near two millions per ann. In 1764 it produced at Michaelmas, after making good deficiencies, $£^{2,105,000}$ nearly. For five years after 1964 , its average produce, reckoned to Cbristmas in every year was $£ 2,234,780$. For five years, ended in 1774, its average produce (after making good the deficiency of the fund in 1758) was $\notin 2,610,759$. In 1775 , it produced $\npreceq 2,917,869$. In $1776, \not{ }^{2} \cdot 166,517$. In 1777, it was charged with an annuity of $\npreceq 100,000$ per ann. to the civillist; and, after paying three quarters of this annuity, and half a year'sinterest of five millions borrowed in that year, it produced from October 1776 to October 1777, £2,685,669. From October 1777 to October 1778, 1779, and 1780, it produced $£ 2,442,063$, $\notin 2,267,399, \not{ }^{2}, 403,017$, after paying the said annuity, and also after making good the
 the deficiency of the fund in 1758, and all the deficiencies ${ }^{2}$ of the new taxes.

 It appears from this detail, that after the peace in 1763 the income of the sinking fund increased considerably. The causes of this have been partly the falling in of life-annuities, and the greater productiveness of the taxes occasioned by the increase of luxury. But the principal cause was the falling in of the interest of about ten millions and a half of the public debts which were discharged during the twelve years of peace between 1763 and 1775 . This diminution of the public debts was made, not by the sinking fund, but by a contribution from the East India Company of $£_{400,000}$ per ann. begun in 1768 , and continued for five years; by the profits of ten lotteries; by the composition for maintaining French prisoners; sale of French prizes taken before the declaration of war in 1756; and other extraordinary receipts, amounting in all to above eight-millions. This fund, therefore, did not pay off more than two millions and a half, the rest of its produce having been employed in bearing the expences of the peace establishment, which, during that period, were not much

 less than double to what they tad been in any former period.

 To the sum just mentioned, add three millions paid off in the peace between 1748 and 1756 , and three millions paid off in 1736 and 1737, and it will appear that the whole amount of the public debts paid off by the sinking fund, from its first alienation in 1733, to the commencement of the American war, is only eight millions and a half.

 It has been said, that when money is wanted for defraying public expences, it makes no difference whether it is obtained by diverting the sinking fund, orby a new loan, I havetaken notice of this fallacy in page 297. Money in a sinking fund, if never alienated, is improved, I have shewn, at compound interest; but, when procured by a loan, bears only simple interest. A nation, therefore, whenever it applies the income of such a fund to current expences rather than the redemption of its debts, chuses to lose the benefit of compound interest in order to avoid paying simple interest; and the loss in this case is equal to the difference between the increase of money at compound and simple interest. The following calculation will shew what this difference is.

 One penny put out at our Saviour's birth to five per cent. compound interest, would, in the year 1791, have increased to a greater sum than would be contained in three
 hundred millions of earths, all solid gold. But, if put out to simple interest, it would in the same time, have amounted to no more than SEVEN Śhillings and sixpence. All governments that alienate funds destined for reimbursements, chuse to improve money in the last tather than the frist of these ways.

 # ADDITIONAL OBSERVATIONS,

 ## BY

 ## THE EDITOR.

 THE preceding account brings down the history of the Sinking Fund to the time in which the fourth edition of this work was published. It was the intention of Dr. Price in the fifth edition to have given an account of the new Sinking Fund which had been established in the year 1786; but, while engaged in preparing that edition, he was seized by a disorder which soon terminated in his death, and put a final period to that and all the other additions with which he meant to improve the present work.-Being anxious in some degree to fulfil his intentions as well as to render justice to his memory, I published in the following year (1792), an account of his writings on the public finances, with a view principally of introducing the subject of the new Sinking, or Consolidated Fund, and of noticing the great, though unacknowledged assistance which the Minister had derived from his councils in the formation and establishment of it.

 That pamphlet has long been out of print, and as I am uncertain whether I shall ever publish another edition, I know of no better method of perpetuating my original design in writing it, as well as of supplying, (though very imperfectly), what Dr. Price

 Dr. Price was prevented from accomplishing, than by inserting the following chapter, which contains all that is most important on the subject in that work.

 An Account of three different Plans for redeeming the National Debt, which were formed by Dr. Price in the year 1786, and communicated by him at that time to Mr. Pitt, the Chancellor of the Exchequer.
 The measures which had been recommended in the King's Speech during the administration of Lord Lansdown were too little regarded by his immediate successors. The same destructive plan of borrowing money was adopted in the year 1784, which had been invariably pursued for the ten preceding years, and a needless addition was made to the capital of the public debt of near five millions more than the sum advanced. When Mr. Pitt returned to power, the loans, which were still necessary to discharge the expences of the late war, were conducted upon better principles. The plan of borrowing at a high rate of interest, which had been so often recommended by Dr. Price as the best means of facilitating the redemption of the debt, was now adopted, and almost the whole of the Navy, Victualling, and Ordnance arrears were funded in a stock bearing an interest of five per cent. In the year 1786 this improvement in the method of borrowing was succeeded by others of greater importance. The public accounts were thrown into new order; the former divisions of the taxes into four classes under the names of the Aggregate, the South Sea, the General, and the Sinking Funds, were abolished, and all included in
 one fund called the Consolidated Fund. The surp plus remaining, after deducting from the whole of the taxes thus consolidated all the expences of the public debts and the Civil List, correspond with what was formerly called the Sinking Fund. Out of this surplus a million annually was appointed by Parliament to be applied to the gradual discharge of the public debt; and it was only what remained of it after this deduction that was to be disposable for the expences of the peace-establish-ment.-This was undoubtedly a very important measure, and well deserving the praise which the Minister assumed to himself as the author of ir. From a slight perusal, however, of the present and of the other works of Dr. Price, it will be readily seen that this subject had long engaged his attention, and that the nation is indebted to him alone for the first idea of the measure, and for the very method in which it has been carried intó execution. Had Mr. Pitt, therefore, derived his information only from those works, he would have had but little claim to the lofty pretensians which he made on this occasion; but it will appear from the following account that his obligations extended much further, and that the hope which be expressed in the House of Commons of "having his name " inscribed on a Pillar to Public Credit, as its " preserver and restorer," afforded no very equivocal proof that his vanity and ambition were equal at least to his merit and his gratitude.

 On the 8th of January, 1786 , Dr. Price received a letter from Mr. Pitt, of which the following is an extract:
 " Dear Sur,
 "The subject of the papers which I enclose " will,

 * will, I am sure, be an apology for the liberty " I take in troubling you, and in requesting your " opinion upon them. When you have had suf"ficient leisure to consider them, I should be " greatly obliged to you, if you will allow me to " hope for the pleasure of seeing you at any time " that is convenient to you.-The situation of the © revenue certainly makes this the time to esta" blish an effectual Sinking Fund. The general " idea of converting the three per cents into a fund bearing a higher rate of interest, with a view to
 " facilitate redemption, you have on many occa-
 " sions suggested, and particularly in the papers
 " you were so good to send me last year. The
 α rise of the Stocks has made a material change
 ω since that period, and I am inclined to think
 "s something like the plan I now send you may
 " be more adapted to the present circumstances.
 There may be, I believe, some inaccuracies in
 " the calculations, but not such as to be very
 " material. Before I form any decisive 'opinion,
 "I wish to lears your sentiments upon it ; and " shall think myself obliged to you for any im" provement you can suggest, if you think the " principle a right one; or for any other proposal
 " which from your knowledge of the subject you " may think preferable."

 By the plan inclosed in this letter, which Mr. Pitt intended to have restablished for reducing the national debt, it was proposed that $107 \frac{\mathrm{~T}}{3}$ millions of the three per cents should be converted into $74 \frac{1}{2}$ millions nearly of five per cents, by changing each $£ 100$ stock in the former, which bore an interest of 3 per cent. into a capital of $\notin 69 . . .10 \mathrm{~s}$. in the latter, bearing an interest of $£ 3 \ldots 9 s . . .6 d$. This would have produced an additional expence
 of $£ 510,000$ per annum nearly, which was to have been deducted from the million surplus in. tended to be annually applied for the purpose of redemption ; and the remaining sum of $£ 490,000$ was to have been employed in discharging the principal of this five per cent. stock.

 The whole of this plan seems to be founded on a principle which Dr. Price had often publicly enforced, and which he appears to have repeated in his private communications to Mr. Pitt. But surely no principle could be more grossly misapplied. If a judgment were to be formed of the efficacy of a conversion of stock in redeeming the public debts from its feeble operation in the present instance, it might well be concluded, that instead of quickening, it retarded the progress of redemption : for a million annually applied in this manner would not have discharged the $74 \frac{1}{2}$ millions of five per cent. stock in less than 44 years, or in a shorter period than it would have discharged $107{ }_{3}$ millions of the three per cents. at 90. In the year 1786 the three per cents. were between 69 and 70, and therefore had this scheme been carried into execution, it would have been attended with the same disadvantage to the public as if 20 per cent. had been then paid on the principal, more than the market price. In delivering his opinion of this scheme Dr. Price very strongly urged his objections to it, and Mr. Pitt appears from the following letter to be impressed by his arguments.

 Holwood Hill, Jan. 15, 1786.

 $$
 \text { " Dear } \mathrm{Sir}_{\mathrm{l}}
 $$

 "I am much obliged to you for the observa" tions you have been so good to send me on the
 ${ }^{6}$ papers I troubled you with. They appear to " me on the whole very convincing. I shall " think myself much obliged to you, if you " would do me the honor to call any morning " after Tuesday next in Downing-street, when " you have done with the papers. And if it " should be in your power to let me know the "day before, and to fix an early hour, I can be "c certain of being at leisuré. The reason of my " making this request is, that I think some points " may occur which may be better explained in "conversation than by writing, and'I am anxious " to avail myself to the utmost of your assistance, " where it may be so material. I am, dear Sir, ${ }^{6}$, with great truth and esteem,
 " Your most obedient and faithful servant, "W. Pitr."

 In consequence of the interview which Mr. Pitt had requested in this letter; he was at length so far convinced of the weakness and insufficiency of his plan as to throw it entirely aside, and Dr. Price was induced to communicate to him the three following plans of his own.

 ## PLANI.

 Million per ann. Surplus aided by the falling in of the Temporary Annuities, Life Annuities, Expences of Management, and converting sixty millions of the three per cents. into four per cents. by providing in the first five years $£ 600,000$ per ann. for paying the difference of Interest.

 Fund.
 Stock redeemed.
 3 per Cents. redeemed.
 Surplus1,000,000 at 75 1,333,333
 Received in Exchange
 for six millions of three
 per cents. converted
 into 4 per cents. at
 181 $\frac{1}{3}$ per cent..........1,100,000 at $75 \ldots$ 1,466,666
 Interest of § $1,333,333^{\text {1 }}$
 and $\mathfrak{E}_{1,466,666 \ldots \ldots}$. 4,000
 Expence of management
 at $562 \frac{1}{2}$ per million....... 1,575
 Short annuity for ten
 years lapsed..............25,000
 Life Annuities lapsed, at £2000 per ann 2,000
 Management on the
 Short Annuity 35^{1}
 Received for 18 millions
 of three per cents. converted into four per sents. at 20 per cent. . . $(3,600,000)$ at $78 \ldots 4,615,3^{8} 4$

 Fund.
 Stock redeemed. 3 per Cents. redeemed.
 も. ※.

 One year from the first
 payment. 1,112,926 at 78 . . . 1,426,828
 Interest of ${ }_{4,615,3 \mathbf{8}_{4}}$
 and $F_{1,426,828 \ldots . . .181,266}$
 Expence of management : \therefore. $3,6.11$
 Life Annuities lapsed. 2,000
 Received for 12 millions
 of three per cents. con-
 verted into 4 four per
 cents. at 20 per cent. . . $2,400,000$) at $81 \ldots 2,962,962$

 Two years from the first
 payment. 1, 1,299,803 at 81 1,604,695
 Interest of $\mathfrak{E}_{2,962,96 z}$
 and $£_{1,604,695 \cdots \ldots 137,029}$
 Expence of management2,568
 Life Annuities lapsed.......2,000
 Received for 12 millions
 of three per cents. converted into four per 4 per Cents. redeemed. cents. at 20 per cent. . . $(2,400,000)$ at par. $2,400,000$

 | Three years........... 1,441,400 | 1,441,400 |
 | :---: | :---: |
 | Interest of $£^{2,400,000}$ and $£ 1,441,400 \ldots$. . . . 153,656 | |
 | Expence of management 2,160 | |
 | Life Annuities lapsed...... 2,000 | |
 | Received for 12 millions | |
 | of three per cents. con- | |
 | verted in four per | |
 | cents. at 20 per cent . . $(2,400,000)$ | 2,400,000 |

 324 Additional Observations,
 Fund. Stock Redeemed. 4 per Cents. redeemed.

 | £ | £ |
 | :---: | :---: |
 | Four years............1,599,216 | 1,599,2 |
 | Interest of $\mathfrak{E}^{2,400,000}$ and $\mathfrak{E}_{1,599,216 \ldots \ldots 159,968}$ | |
 | Expence of management ...82,250 | |
 | Life Annuities lapsed......2,000 | |
 | Exchequer Annuities lapsed 56,250 | |

 Five years............ 1,819,684
 1,819,684
 Interest of $\mathfrak{E}_{1,819,684 \ldots} \ldots \mathbf{7}^{2,787}$
 Expence of management . . . 1,023
 Life Annuitiés lapsed.......2,000

 Six years............. 1,895,494
 1,895,494
 Interest of $\mathscr{E}_{1,895,494 \cdots \cdot 75,820}$ Expence of management...1,066 Life Annuities lapsed2,000

 5 per Cents. redeemed at par.
 $\begin{array}{cc}\text { Seven years, }, 974,3^{80} & 1,974,380 \\ \& c . & \& c .\end{array}$

 Free

 Free Revienue. Stocks redeemed.
 In 25 years after
 > the first pay-
 > ※ \mathfrak{z}
 > ment. 5, 190,980 . 13,409,869 three per cents. 52,959,990 four per cents.
 > * 19,953,649 five per cents.

 > Total $\mathfrak{E}^{86,3^{2} 3,508}$

 In 30 years after

 $$
 \begin{aligned}
 & \text { the first pay- } \mathfrak{E} \text { £ } \\
 & \text { ment 6,345,566.. 13,409,869 three per cents. } \\
 & \text { 81,128,473 four per cents. } \\
 & \text { 19,953,649 five percents. }
 \end{aligned}
 $$

 Total $\mathfrak{E}^{114,491,991}$
 In 35 years after
 the. first -pay-
 ment....... 7, $5^{11,358}$. 35,633,625 three per cents. 93,074,916 four per cents. 19,953,649 five per cents.

 $$
 \text { Total } \mathscr{E}_{148,662,190}
 $$

 In 40 years after
 the first pay-
 ment 8,731,523 . . 75,557,308 three per cents. $93,074,916$ four per cents. 19,953,649 five per cents.
 Total $£{ }^{188,55_{5}, 873}$

 * In this plan 25 millions of stock are paid off in seven years. The five per cents. therefore become redeemable at par, and the whole debt in that stock is discharged at the end of 15 years. From that period the payment of the four per cents. again commences, and the whole of them is paid off in the 3 2nd year, from which time the tbree per cents. continue to be redeemed at par during the remainder of the term.

 ## PLANII.

 Million per annum Surplus, aided by the falling in of the Temporary Annuities, Life Annuities, Expence of Management, and $£ 600,000$ per ann. added to the Million Surplus by new Taxes, or Savings, in the first five Years without Conversions.

 Fund.
 Stock redeembd.

 ## 3 per Cents. redeemed.

 $$
 \mathfrak{Z} \text { - }
 $$

 Surplus 1,000,000, at $75 \ldots$. . . 1,333,333
 Interest . ! 40,000
 Management 750
 Annuities lapsed 25.000
 Management on those
 Annuities
 Life Annuities lapsed,000

 One year 1,068,101, at 78 . . . 1, 369,360
 Interest
 41,081
 Management
 .770
 Life Annuities lapsed 2,000
 Additional tax *, .. , . , 60,000

 ## Fund. . Stock redeemed.

 3 per Cents. redeemed.
 \mathfrak{z}
 \mathscr{E}
 Two years1,171,952, at $81 \ldots . .1,44^{6,854}$
 Interest. 48,405
 Management 814
 Life Annuities lapsed.2,000
 Additional tax 180,000

 | Three years | 4 per Cents. redeemed. $1,398,171 \text {, at par } \ldots 1,398,171$ |
 | :---: | :---: |
 | Interest.... | . 55.927 |
 | Management | 786 |
 | Life Annuities | . . 2,000 |
 | Additional tax | . 120,000 |

 Four years 1,576,884 1,576,884
 Interest 63,075
 Management 887
 Life Annuities lapsed 2,000
 Exchequer Annuities lapsed 56,250
 Additional tax. 120,000

    ```
    Five years . . . . . . . . . . . . 1,819,096
    . . . . . . . . . 1,819,096
    Interest . . . . . . . . . . . . . . . . . 72,763
    Management . . . . . . . . . . . . . 1,023
    Life Annuities lapsed. . . . . . 2,000
    Additional tax. . . . . . . . . . . 120,000
    ```

 Six years 2,014, $882 \ldots . . .$. . . . 2,014, 882
 Interest .80,595
 Management1,123
 Life Annuities lapsed.2,000
 In

 | In 25^{\prime} years \ldots. $5,212,370$ | | ${ }^{*}$ | |
 | :---: | :---: | :---: | :---: |
 | | | 21,258,225 | three per cents. |
 | | | $\begin{array}{r} 32,769,4 \times 8 \\ \quad \begin{array}{l} 10,068,691 \end{array} \\ \hline \end{array}$ | four per cents. five per cents. |
 | Total | | ${ }^{2}$ 73,996,334 | |
 | In 30 years . . .6,069,709 | | .. 48,983,157 three per cents, $3^{2,769,418}$ four per cents. 19,968,691 five per cents. | |
 | | | | |
 | | | | |

 Total $\mathscr{E} 101,721,266$.
 In 35 years...7,060,130 .. 81,258,874 three per cents, 32,769,418 four per cents. 19,968,691 five per cents.

 | | |
 | :---: | :---: |
 | | |

 Total $\mathfrak{Z}^{171,5{ }^{22,335}}$

 * At the expiration of 13 years $\{20,780,355$ in the four per cents. and 4,974, 151 Stock in the tbred per qepts. are paid off, . From this period, therefore, the five per cents. become redeemable. These are all discharged the beginning of the 20th year, and in two years more the remainder of the four per cents. is redeemed. From the azd-year the three per cents. are paid off at par, to the end of the term.

 ## PLANIII.

 Million per annum Surplus, aided only by the falling in of the Temporary Annuities, Life Annuities, and ${ }^{-}$ Expences of Management.

 Fund.

 Stock redeempd

 ## 3 per Conts. redeemed.

 Surplus 1,000,000, at 75 1,333.333
 Interest 40,000
 Management * 75°
 Ten Years Annuity lapsed . . 25,000
 Life Annuities lapsed.........2,000

 One year 1,067,750, at $78 \ldots . .1,368,910$
 Interest 41,067
 Management . 770
 Life Annuities lapsed 2000

 Two years 1,111,587, at 81..... 1,372,329 Interest $41,17.0$
 Management . 772
 Life Annuities lapsed, \therefore : ...2,000

 * Since these Tables were computed, the expenels of ridanagernente. have been reduced to $£ 450$ per million per ann.; but the difference this thakes in the results is too inconsiderable to deserve notice.

 Three
 330 Additio 4 per Cents. redecmet,
 \&
 Three years1,155,529, at par. $1,155,529$
 Intèrest 46,22 1
 Management 650
 Life Annuities lapsed2,000

 # Four years*. 1,204,400 1,204,400
 Interest 48,176
 Management 677
 Life Annuities lapsed 2000
 Ex́chequer Annutties lapsed 56,250

 Five years 1, 311,503. 1, $3^{11,503}$
 Interest 52,460
 Management 73^{8}
 Life Annuities lapsed........2,000

 Six years 1, 366,701 1, 1, 866,701
 Interest 54,668
 Management 769
 Life Ånnuities lapsed.2,000

 * All the redemptions in these plans, after the first three years, are supposed to be made at par. Exchequer Anmuities, amounting to $6^{80,000 \text {; }}$ fall to the fund in the 20th year, and f,404,332 per ann. (being the 30 years annuity) in the 22d. year.

 Free

 | by the Editor. | |
 | :---: | :---: |
 | Free Revenu | Stocks |
 | | |
 | | |
 | | 43 four |
 | Total $\chi_{52,504,690}$ | |
 | $34,28,074$ four per cents.$18,039,875$ five per cents. | |
 | Total $\mathfrak{F}_{73,379,126}$ | |
 | In 35 years $\ldots . .5,330,252 \cdot \overline{45,416,595}$ three per cents. $34,283,974$ four per cents. $18,039,875$ five per cents. | |
 | Total $\overline{\text { ze97,739,544 }}$ | |
 | In 40 years. $\ldots, 6,196,104, \cdots 3,747,452$ three per cents. $34,28,074$ four per cents.$18,039,875$ five per cenis. | |
 | Total $\longdiv { \mathscr { E } 1 2 6 , 9 7 0 , 4 0 1 }$ | |

 # EXPLANATIONS AND REMARKS,

 ## BY

 ## DR. PRICE.

 " IN the first of these plans the three per cents. are supposed at 75 , and the difference of, price between them and new four per cents. supposed to be made first redeemable when under par, but irredeemable when above par till 60 millions of other stocks were redeemed, is reckoned at $18 \frac{1}{3}$. The market difference of price between the present four per cents. redeemable at pleasure, and the South Sea three per cents. when this plan was formed (the latter being then at 68) was above 20. Was it not reasonable, therffore, to expect that the holders of these amruities would eagerly have taken at $18 \frac{\mathrm{~F}}{\frac{\mathrm{~F}}{2}}$ per cent. an exchange of them for such new four per cents. as those just described, and therefore much more valuable ?"
 " $£ 18$... 6 s... $8 d$. for every $£ 100$ three per cent. stock converted into a four per cent. stock would have produced just $£ 1,100,000$ for the conversion of six millions. $\not \mathscr{\not} 20$ for the conversion of every $\mathcal{E} 100$ stock would have produced $\notin 1,200,000$ for the conversion of six millions."
 "This conversion was taken in the first plan at $18 \cdot$ per cent. the first year, and only six millions were supposed to be converted, and $£ 1,100,000$ then gained for the fund; because the first year was suppesed to be a year of experiment only, and therefore
 therefore more liberal terms were supposed to be offered.-Should the expariment haye succeeded, and the difference of price between the three per cents. and the new four per cents. have risen above $£ 20$, the former being above 75 , a conversion might have been offered the second year, at 20 per cent. of 18 millions into four per cents. not redeemable till a larger amount of stocks should have been previously redeemed; and afterwards in the three following years, a third, a fourth, and a fifth conversion, at the same price of twelve millions each year as specified in this plan, the amount of stocks to be previously redeemed to be increased every successive year ; in consequence of which the last 12 millions would, without any effect on the efficiency of the plan,have come to be declared the last redeemable of 108 millions."
 " Should the Stocks have risen, as is supposed in these plans, greater sums than these specified would probably have been gained by the proposed conversions, and therefore the results in the first plan increased.-There were advantages, not immediately apparent, which would have been gained by these conversions.-First, the public would have availed itself by them of the want of confidence in a plan of redemption which must more or less have taken place at first. For the less the public confidence had happened to bave been, the greater would have been the effect of the regulation proposed in raising the value of the new four per cents. and consequently in gaining money for the fund."
 " Secondly, it is particularly worth attention that it would have diminished the loss that might have accrued from an interruption of the scheme,
 should an interruption have happened after $\neq 600,000$ per ann. had been added to a million surplus for carrying on the scheme. Should, for instance, the scheme have been interrupted in the seventh year of its operation, and after the fund had increased, according to the first Table to $£ 1,974,380$ and redeemed 25 millions, and, by the 2 d Table, to $\mathscr{E} 2,098,600$, but redeemed only eleven millions; the public would have gained, by the measure of conversion, the excess of the interest of 27 millions above 13 millions; and, therefore, the addition of $\mathscr{E} 600,000$ per ann. to the fund in the first five years: (which both the first and second Table suppose) would have been nearly replaced, if the plan in the first Table had been adopted. Two advantages, therefore, would in this way have been obtained.-1 st. The advantage of a redemption of fourteen millions more than could have been redeemed by the plan in the 2 d Table. And, 2dly, the advantage (should the scheme have ever' been resumed) of having had 60 millions of four per cents. to be redeemed by a Sinking Fund, instead of 60 millions of three per cents. and consequently a much more easy and rapid course of redemption."
 " At the end of the 40 years it is to be observed that the plan in the first Table would have redeemed $188 \frac{1}{2}$ millions, and the plan in the second Table $171 \frac{1}{2}$ millions; but that even in the first four years the first plan would have redeemed in the same time only $5 \frac{1}{2}$ millions, and but little more than the plan in the third, Table. This pointed out a farther and a very considerable recommendation of the first plan, and that was, the particular vigour with which it would have operated at its outset, when vigour was most wanted,
 and would consequently have brought the 'free per cents. into a course of redemption in six years, which would not have been done by the second plan in less than 13 years, nor will it be done by the third (which is now carrying into execution) in less than 16 years."

 Such were the observations and arguments urged by Dr. Price in favour of the first plan. But the Minister chose to adopt the third and the weakest, from an apprehension, if he adopted either of the two other plans, that he should be obliged to load the country, in the course of five years, with new taxes to the amount of half a million. Happy had it been for the nation if he had always entertained the same apprehensions.-But he appears to have soon thrown off every anxiety of this kind, and in a much shorter term than five years to have had very little hesitation in creating new taxes to the amount of $£ 800,000$ per annum, for purposes ill calculated to assist the operations of the Sinking Fund.

 From the inspection of this plan it appears that, with the aid of the temporary annuities, the appropriated million will in 26 years increase to four millions per annum, and redeem above 56 millions of Stock, and that in 40 years it will increase to more than six millions per annum, and redeem 126 millions of Stock.-But it was directed by a clause in the Act of Parliament which established this plan, that the accumulation of the fund should be limited to four millions a year, and consequentiy that the operation of compound interest should be changed into that of simple interest just at the
 time when it would have redeemed a greater portion of the debt'in the next 14 years than it had done in the 26 preceding years. Compared, however, with what Mr. Pitt first intended to have established, it deserves respect; and though enfeebled and mutilated by his alterations, it certainly was capable of having done much in relieving the country from the pressure of its burthens. But the public debts have inicreased since its establishment in a degree so enormous as to render it now a matter of little consequence what plan the Minister may chuse to adopt for their redemption.

 The following statements exhibiting a view of the national debt in the year 1786, when the Consolidated Fund was first established, compared with its amount at the present time, afford but little encouragement to hope, from the direction in which Mr. Pitt has hitherto proceeded in his management of the finances, that the redemption of the public debt is likely to be soon accomplished, unless it be by a process whose operations are very different from those of compound interest.

 Amount of the Funded Debt in the year 1786.

 131,202 Exchequer Annuities for 8 and 22 years then worth at 5 per cent. $1,359,000$
 25,000 Bank Annuities for 10 years Do. 88,500
 82,317 Life Annuities, taken at 10 years purchase 823,170
 680,375 Bank Annuities for 76 years, then worth at 5 per cent 13,274,117
 404,332 Do. for 24 years Du. 55579,781
 1,323,226 Life and Tcmporary Annuities,

 - then worth $\ldots \ldots \ldots \ldots \ldots$..........124,568

 Stock in the 3 per cent. Bank and South
 Sea Annuities 187,611,254
 Ditto in the 4 per cent. Consolidated Bank
 Annuities
 32,750,000
 Ditto in the 5 per cent, Bank Annuities... $\quad 17,869,993$
 Whole capital of the Funded Debt . . $\mathscr{E}_{29,355,815}$
 The annual Interest and other charges payable on account of this debt was stated in the Report from the Select Committee of the House of Commons, to be £ $9,266,940$.

 ## Amount of the Funded Debt in April 1802.

 $\mathfrak{E}^{8} 80,223$ per ann. Exchequer Annuities, expiring in 3,4 , and 5 years, worth in present money ${ }^{*}$... 207,002. Life Annuities granted'chiefly before the present reign, and amounting to $\mathscr{Z}^{7} 5,492$ per annum, valued at 7 years purchase.. 528,444 Annuities with benefit of Survivorship amounting to \mathfrak{E}_{540} per annum $\ldots . .$. ... 18,000$\mathscr{E}_{42}{ }^{2}, 039$ per annum Bank Annuities, expiring in 1808, now worth:. $2,236,900$
 $\mathfrak{E}_{1,001,555}$ per annum Ditto, expiring in 1860, now worth.'.

 22,521,300
 Present value of Life and Temporary Ann'. $25,511,646$
 Stock in the three per cent. Perpetual Annuities \dagger

 466,674,587
 four per cent. Ditto 49,425,085
 five per cent. Ditto 59,478,039
 Borrowed on a Tontine in 1789 1,002,099
 593,091,456
 Deduct the Stock redeemed by the Sinking
 Fund. 59,588,904
 Imperial Loans, Stock in the
 3 per cents. unredeemed. ... 7,193,906
 $\mathscr{E}_{2}{ }_{3} 0,000$ per ann. for 18 years
 worth, 2,931,120
 533,502,552

 $$
 2,931,120
 $$

 相

 Unredeemed Funded Debt of Great Britain $\mathfrak{E}_{543,627,578}$
 *The values of these and the following annuities have been computed at four per cent. and on the supposition that they are payable balf-yearly.

 + Of this Stock $£_{18,001,148 \text { are stated to be redeemed by the sale of }}$ the Land Tax; but while that tax is annually taken in the "Ways and Means" at the usual sum of two millions, it would be as ábsurd to deduct the stock thus redeemed from the amount of the public debt, as it would be for a person who had sold his estate to continue reckoning the produce of it as a part of his yearly income. It has, indeed, of late been the custom to designate this tax by a different appellation, and to call it a "tax of 45 . in the pound on pensions, places, \&c." leaving'the word land entirely out of the account. But such subterfuges are too contemptible even for those who have recourse to them.

 In the year 1716, when Sir Robert Walpole undertook to redeem the public debts, they did not much exceed the sum of 46 millions: But during the course of 22 years accumulation and redemption proceeded with such equal pace, that in December 1738, when the produce of his Sinking Fund was wholly alienated, those debts amounted nearly to the same sum with which he commenced his operations. In the year 1786, when Mr. Pitt engaged in a similar process, the profusion of his predecessors had so far exceeded their economy, as to increase the public debts to 259 millions; but in less than 16 years from the establishment of his fund, although 60 millions nearly have been redeemed in the mean time, those debts have swollen to the enormous sum of 543 millions, and the annual expenditure necessary to provide for them amounts to such a sum as would have been sufficient in two years to discharge the whole debt when the first Sinking Fund was established by Sir Robert Walpole!

 It should be observed that, in addition to the million appropriated to the redemption of the debt in 1786, the sum of $£ 200,000$ has been annually voted by Parliament for the like purpose, and that these sums, assisted by the temporary annuities which have expired since that period, have redeemed 40 millions nearly. The remaining 20 millions have been discharged by another Sinking Fund established in the year 1792, agreeable to the plan recommended in the preceding chapter of this work ; * the design of which was to provide that " in all future loans, $\notin 1$ per cent. on the capital borrowed should be applied annually,
 together with the accumulating interest, to the redemption of that capital." In consequence of the unprecedented expenditure of the last war, the annual amount of that fund, exclusive of the interest on the stock redeemed, exceeds $\notin 2,500,000$. Nor does this sum, great and enormous as it must appear to be, give an adequate idea of the whole expenditure of that disastrous period. The Minister finding himself unable to proceed any longer on the system of funding, had recourse during the last four years to a variety of expedients for raising the supplies: such as forced loans, voluntary contributions, tripled assessments, and above all to that solid system of finance, the Tax upon Income, which was to have discharged the debt almost as soon as it was contracted. But these wretched expedients having all failed, they have been successively abandoned, and the Minister has again been obliged to have recourse to the old system of funding, which he trad so lately declared to have been entirely exhausted. By chusing to confide to those expedients rather than to make effectual provision for the debt, new taxes have become necessary for $£ 56,445,000$ funded on the credit of the Income Tax. This debt, together with $\mathscr{E}^{28,750,000}$ funded in the present year, requiring above two millions and a half per annum to be raised merely for interest, it was found impossible to raise a further sum of $£ 850,000$ per annum for the redemption of the debt. Hence the new Sinking Fund has been abandoned; and a debt of 85 millions created without any particular provision for the discharge of it. In order, however, to console the nation on relinquishing a measure for which the Minister claimed so much credit to himself and the country, a new expedient
 has been adopted. In lieu of the two former Sinking Funds a new one has been established, which by lessening the means, is said to have the surprising effect of increasing the power of redemption. By this plan all the debt created before and since the year 1786 is consolidated, and the sums which were separately applied to the discharge of the old and new debt are united in one account and applied to the discharge of the whole. The sum of $\mathscr{E}^{200,000}$ annually voted by Parliament in aid of the Sinking Fund is also made a perpetual grant for that purpose, and the accumulation is no longer to cease, as in the former plan, when it has amounted to a given sum, but is to proceed until the entire redemption of the public debt is completed. The assistance, however, which the fund was to have derived from the falling in of the temporary annuities, and the reduction of stock bearing 4 and 5 per cent. to a lower interest is now withholden from it, and the Minister has already anticipated some of these future resources by borrowing money on the reversion of them. But notwithstanding this antici-pation-notwithstanding the new Sinking Fund is charged with the payment of 85 millions more than the two former ones, our prospects are said to be highly improved, and it is demonstrated by a long series of computations, that if the nation should be blest with an uninterrupted course of peace, and the management of its finances be as much distinguished for economy as it has hitherto been for the want of it, that the debt will be discharged, and every incumbrance removed about the middle of the present century! If any are soothed by such prospects, let them look back to the events of the last century-let them recollect
 that 40 years of it have been consumed in war, and that more than 540 millions have been added during that disastrous period to the permanent debt of the country. With such woeful experience of the past, is it possible to look forward with confidence, or even with hope to the future? While the same passions prevail among the governments of the world, must not the same consequences inevitably follow? Can any person believe that the present century will be exempt from the calamities of the last ; or that in the very next war which takes place, the enormity of the taxes will not render it necessary to alleviate the public burthens * by making fresh inroads into the Sinking Fund ?-Perhaps the Minister will then, as on a late occasion, console the couniry by observing that " a few years in the existence of a state are not to be counted, and therefore that it is of little consequence whether the bright prospect of redemption shines upon the middle or the close of this century."-The present relief produced by the alienation of the fund will give force to these delusions, and in proportion as its operations are enfeebled and prolonged, the public will become less anxious about it; until, losing all concern for the interest of a remote posterity, and glad to procure even a temporary relief from the growing pressure of their burthens, they abandon it altogether, without any other prospect of the debts being terminated than by the utter extinction of the credit and resources of the country.

 ## NOTES.

 Note (A) See Question III. Page 11.
 LET E be any given expectation of Life; and $\frac{4 \mathrm{E}-x}{4 \mathrm{E}} \times p x$ will be the number of persons alive at the end of x years, arising from p persons left annually as widows (or added annually to a town or society) at the age whose expectation is E . The maximum, therefore, is always $\mathrm{p} \mathrm{E}-$. In Mr. De Moivre's Hypothesis, E is always $\frac{1}{2}$ the difference between the given age and 86 . See the Note, p. 2, and the latter end of the Note in p.39. See likewise the beginning of the First Essay, in Vol. II. and Note (K,) in the following Notes, where the investigation of this rule will be given.

 It will not be amiss to give the following example of the application of this rule.

 At the time of the commencement of the scheme among the ministers and professors in Scotland for making provision for their widows, it was necessary, that a calculation should be made of the number of widows that would be upon the scheme at the end of every year till they came to a maximum, on the supposition that, (agreeably to what particular enquiry had shewn to have happened for many preceding years,) 20 new widows would be left every year ${ }^{\text {: }}$. In order to make this calculation, let 4 of the 20 widows be supposed to be under 32 years of age when left; and let 28 be supposed their mean age. Let the same num- .

 ber be left between 32 and 39 , and let 35 be their mean age; between 39 and 47 , and 43 their mean age; between 47 and 57 , and 52 their mean age; between 57 and the extremity of life, and 63 their mean age. The number in life together to which, in 10 years, 4 widows left annually at the age of 28 will grow, is, by the rule, (E being 29) $\frac{116-10}{116} \times 40$, or 36.55 . - The number alive at the end of 20 years, will be $\frac{116-\frac{20}{116} \times 80 \text {, or 66.2. }}{6}$. At the end of 30 years, the number alive will be 89 ; of 40 years, 104,82 ; of 58 years 116 . These numbers, found in the same way, for the 2d class, (E being 25.5,) at the end of $10,20,30,40$, and 51 years, will be $367-64.31-84.7-97.25-$ 102 -For the third Class, (E being 21.5) at the end of $10,20,30,40$, and 43 years, 35.34-61.4 -78.13-85.6-86-For the 4th class, (E being 17) at the end of $10,20,30$, and 34 years, $34.11-56.47-67-68$ - For the 5th class, (E being 11.5) at the end of 10,20 , and 23 years, 31.3-45.2-46-The whole number, therefore, consisting of all the classes, will come to a maximum nearly in 58 years; and the totals in life, at the end of $10,20,30,40,50$, and 58 years, will be 173.37-293.58-364.33-401.67-418.

 These determinations suppose none to marry. In 10 years, from 1757 to 1767 , I have been informed, that but 9 widows married. Let us then suppose, that one widow of the first class marries every year; and let all that marry, be supposed to continue, one with another, 5 years in widowhood before they marry. On these suppositions, the foregoing totals will, at the end of the same periods of years, be 169.23-282-347.5-380.47-394.

 These calculations are made from Mr . De Moivre's

 Moivre's Hypothesis. Had they been made exactly from Dr. Halley's or the Northamipton Table, the results would have been very nearly the same. See more on this sabject in note F. (a).
 (a) This theorem is deduced from a fluxional computation in Note (K); but it may be demonstrated without having recourse to fluxions in the following manner: Suppose at the time of admission there were 50 persons aged 30 years, or a number equal to their common complement. Suppose also the same number were added annually at the same age of 31 . In the rectangled isosceles triangle ABO let AB $(=\mathrm{BO})$ be $=5 n$, or the complement of a life at 36 $-\mathrm{CD}(=\mathrm{DO})$ be $=49, \mathrm{EF}$ ($=\mathrm{FO}$) be $=48$, and so on. Hence BD will be $=1, \mathrm{BF}$ $=2, \mathrm{BH}=3, \& \mathrm{c}$. By the hypothesis of an equal decrement of life it is evident that un. der the circumstances of this case the area $A B C D$, or $\frac{2 \mathrm{AB}-\mathrm{BD}}{2} \times \mathrm{BD}$ will express
 the number of annuitants at BDFHK the end of the first year; the area ABEF, or $\frac{2 \mathrm{AB}-\mathrm{BF}}{2} \times \mathrm{BF}$ the number of annuitants at the end of the the 2d year; the area ABGH , or $\frac{2 \mathrm{AB}-\mathrm{BH}}{2} \times \mathrm{BH}$, the number of annuitants at the end of the 8 d year, and so on. If the number of, years be \dot{x}, the annuitants_ living will be $\frac{2 \mathrm{AB}-x}{2} \times x$, or $\frac{4 \mathrm{E}-x}{2} \times x$; for AB being constantly $=50$, or the complement, will be twice the expectation, or 2 E . As 50 or 2 F , (the numbers of persons admitted annually) is to $\frac{4 \mathrm{E}-x}{2} \times x$, (the number of annuitants at the end of x years) so is any other number (p) to $\frac{4 \mathrm{E}-x}{4 \mathrm{E}} \times p x$, the number of annuitants in the same time from (p) persons admitted yearly at the age whose expectation is E ; and when x becomes equal to $\mathrm{BO}(=\mathrm{AB}=2 \mathrm{E}$), the number of annuitants will arrive at its maximum, and be constantly expressed by the area $p \mathrm{E}$. Q.E.D.

 Notes.

 Note (B). Question VI. Page 23.

 LET r signify the sum of \mathscr{f}_{1} and its interest, for one year. The value of a life, whose complement is n, being (by Mr. De Moivre on Annuities, 4th edition, page 14, and page 100.) $\frac{n-1}{n r}+\frac{n-2}{n r^{2}}+\frac{n-3}{n r^{3}}+\frac{n-4}{n r^{4}}, \& \mathrm{c}$. the present value of the remainder of it after two years must be $\frac{n-3}{n r^{3}}+\frac{n-4}{n r^{4}}, \& c$. which is equal to $\frac{1}{r^{2}} \times \frac{n-2}{n} \times$ $\frac{n-3}{\overline{n-2 r}}+\frac{n-4}{n-2 r^{2}}+\frac{n-5}{n-2 r^{3}}, \& \mathrm{c}$.

 Now $\frac{1}{r^{2}}$ is the present value of $£ 1$ due at the end of two years. $\frac{n-2}{n}$ is the probability that a life, whose complement is n, shall continue two years, and $\frac{n-3}{n-2 . r}+\frac{n-4}{n-2 r^{2}}+\frac{n-5}{n-2 r^{3}}, \& c$ c. is the value of a life two years older than the life whose complement is n. And, therefore, (since any number of years less than n may be substituted for two years) the first rule given in this Question is right (β).
 (β) The rules in this and the following Notes are demonstrated rather more satisfactorily, and with equal ease and perspicuity, from the real probabilities of life.

 Let a represent the number of persons living in the table at the age of A , and $b, c, d, e, \& c$. the number living at the end of the ist, 2d, 3d, 4 th, $\& \mathrm{cc}$. years from the age of A. Now since the value of an annuity on the life of A is known to be $=\frac{b}{a r}+\frac{c}{a r^{2}}+\frac{d}{a r^{3}}$, \&c. the value of this annuity after

 The same process, applied to joint lives, will demonstrate what is said in the Scholium.
 ${ }^{t}$ wo years on the same life will be $=\frac{d}{a r^{3}}+\frac{e}{a r^{4}}+\frac{f}{a r 5^{5}}$ \&c. $=\frac{1}{r^{2}} \times \frac{c}{a} \times \frac{d}{c r}+\frac{c}{c r^{2}}+\frac{f}{c r},+\& c$. But $\frac{c}{a}$ is the probability that A lives two years, and the series $\frac{d}{c r}+\frac{c}{c r^{2}}+{ }_{c r^{3}}, 8 \mathrm{cc}$. is the value of an annuity on a life two years older than A. The general rule therefore in the 6th Question is right ; for the reasoning applied to this particular case will also apply to any other interval between the present time and the period at which the annuity is to commence.
 M.

 Note (C). See Question VII. Page 25.

 LLET the complements of any two assigned lives be n and m. The present value of the first possible payment of an annuity to be enjoyed by the life whose complement is n, provided both lives continue 7 years, and the life, whose complement is n survives the other after that term, is the probability, that the life of the expectant shall continue 8 years, and the other life 7 years and then fail in the sth year, multiplied by $\frac{1}{r^{8}}$, or by $£_{1}$ discounted for 8 years.-The probability that the life of the expectant shall continue 8 years is $\frac{n-8}{n}$. The probability that the other life shall continue 7 years is $\frac{m-7}{m}$. The probability that it shall continue 7 years, and fail in the 8th year is $\frac{m-7}{m} \times \overline{1-\frac{m-8}{m-7}}=\frac{1}{m}$. The probability, therefore, that the life of the expectant shall continue 8 years, and the other life continue 7 years and fail in the 8 th, is $\frac{n-8}{n} \times \frac{1}{m}$; and the present value of the first possible payment of the annuity supposed, is $\frac{n-3}{n r^{3}} \times \frac{1}{m}$, See The Doctrine of Annuities, by Mr. Simpson, p. 6-15, or his Select Exercises, p. 315, \&c. In like manner, the present value of the 2 d payment,
 ment, at the end of the 9 th year, may be found to be $\frac{n-9}{n r 9} \times \frac{m-7}{m} \times 1-\frac{m-9}{m-7}$, or $\frac{n-9}{n-9} \times \frac{2}{m}$. and the present value of all the possible payments, $\frac{1}{r^{2}} \times \frac{n-9}{n r} \times \frac{1}{m}+\frac{n-9}{n r^{2}} \times \frac{2}{m}+\frac{n-10}{n r^{3}} \times \frac{3}{m}, 8 c \mathrm{c}$. But this series is equal to $\frac{1}{r^{7}} \times \frac{n-7}{n} \times \frac{m-7}{m} \times$
 $\frac{3}{m-i}, \& c . \quad$ Now $\frac{n-8}{n-i r} \times \frac{1}{m-7}+\frac{n-9}{n-7 r^{2}} \times \frac{2}{m-7}$, $\& c$. is the value of an annuity for a life'seven years older than the expectant, after another life seven years older than the life whose complement is m. $\frac{n-7}{n} \times \frac{m-7}{m}$ is the probability that both the assigned lives shall continue 7 years. And $\frac{1}{r^{7}}$ is the value of \mathscr{f} due at the end of 7 years. The rule, therefore, given for solving this question, is right.

 This demonstration, as well as that in the last note, is, for the sake of more ease and clearness, applied to the hypothesis of an equal decrement of life. It does not, however, depend upon it, but may be applied to any table of observations (γ).
 (γ) Let $a, b, c, d, e, f, \& c$. represent the same quantities 2s in the preceding Note. Let m represent the number of persons living at the age of B , and $n, 0, p, q, s, \& \mathrm{c}$. the number living at the end of the ist, $2 \mathrm{~d}, 3 \mathrm{~d}, 8 \mathrm{cc}$. years from the age of B.-By reasoning in the same manner with Dr. Price in the solution of this question, and supposing the first payment of the annuity to become due at the end of the 4th year, its present value will'be $=\frac{e}{a} \times \frac{p-q}{m r^{+}}=\frac{d p}{a m r^{3}} \times$
 $\frac{e}{d r}-\frac{e q}{d p r}$-the present value of the payment at the end of
 of the 5 th year will be $=\frac{f}{a} \times \frac{p-s}{m r^{5}}=\frac{d p}{a m r^{3}} \times \overline{\frac{f}{d r^{2}}-\frac{s f}{d p r^{2}}}$ -the present value of the payment at the end of the uth year will be $=\frac{g}{a} \times \frac{p-t}{m r^{5}}=\frac{d p}{a m r^{3}} \times \frac{\frac{g}{d r^{3}}-\frac{g t}{d p r^{3}}}{}$ and so on. Hence the whole value will be $=\frac{d p}{a m r} \times \frac{\rho}{d r}+\frac{f}{d r^{2}}+\frac{g}{d r^{3}}, 8 c \mathrm{c}$. $-\frac{d p}{a m^{2} r^{3}} \times \overline{\frac{e q}{d p r}+\frac{f}{d p r^{2}}+\frac{g t}{d p r^{3}}+2 c}$. Let A^{1} and $A A^{1} B$ denote the respective values of annuities on the single and joint lives of two persons 3 years older than A and B, and the general value will become $=\frac{d p}{a m r^{3}} \times \overline{A^{2}-A} A^{1} B .-Q$. E. D. M.

 Note (D). Question IX. Page 32.

 - LET the complement of any two assigned lives be n and m, and the given term be seven years, as in Note (C). The probability that the former life (supposed to be the life in expectation) shall last 8 years, is, by Mr. De Moivre's Hypothesis, $\frac{n-8}{n}$; and the probability that the latter life shall fail in 8 years, is $\frac{8}{m}$; and the first payment of the annuity mentioned in this question, depends on the happening of both these events, the probability of which is $\frac{n-8}{n} \times \frac{8}{m}$.

 The present value, therefore, of the first possible payment of the annuity is $\frac{n-8}{n r^{8}} \times \frac{3}{m}$. - In like manner, the present value of the second possible payment is $\frac{n-9}{n r 9} \times \frac{9}{m}$; and of all the payments, $\frac{n-8}{n r^{8}} \times \frac{8}{m}+\frac{n-9}{n r^{2}} \times \frac{9}{m}+\frac{n-10}{n r^{10}} \times \frac{10}{m}$, \&c. But $\frac{n-8}{n r^{8}} \times \frac{8}{m}=\frac{n-8}{n r^{6}} \times \frac{1}{m}+\frac{n-8}{n r^{8}} \times \frac{7}{m}$; and $\frac{n-9}{n r^{9}} \times$ $\frac{9}{m}=\frac{n-9}{n r^{2}} \times \frac{2}{m}+\frac{n-9}{n r^{2}}+\frac{7}{m}$. The foregoing series, therefore, is equal to the two series's $\frac{1}{r^{7}} \times$ $\frac{n-8}{n r} \times \frac{1}{m}+\frac{n-9}{n r^{2}} \times \frac{2}{m}+\frac{n-10}{n r^{3}} \times \frac{3}{m}, \& c$. and $\frac{1}{r_{7}}$

 $$
 \times \frac{n-8}{n r} \times \frac{7}{m}+\frac{n-9}{n r^{2}} \times \frac{7}{m}+\frac{n-10}{n r^{3}} \times \frac{7}{m}, \& c . \text { or to }
 $$

 $$
 \frac{1}{r^{\prime}} \times \frac{n-7}{n} \times \frac{m-7}{m} \times \frac{\overline{n-8}}{\overline{n-7 r}} \times \frac{1}{m-7}+\frac{n-9}{\overline{n-7} r^{2}} \times
 $$

 $$
 \frac{2}{m-7}+\frac{n-10}{n-7 r^{3}} \times \frac{3}{m-7}, \& c .+\frac{1}{r^{7}} \times \frac{7}{m} \times \frac{n-7}{n} \times
 $$

 $\frac{n-3}{n-7 r}+\frac{n-9}{n-7 r^{2}}+\frac{n-10}{n-7 r^{3}}, \& c$. which is the very rule given for solving this question (δ), as will appear from Notes (B) and (C).
 (d) Retaining the same symbols as in the two foregoing Notes, (β) and (γ) and supposing the first payment of the annuity to become due at the end of the 4th year, the prosent value of the several payments will be $=\frac{e}{a} \times \frac{m-q}{m r 4}+$ $\frac{f}{a} \times \frac{m \longrightarrow}{m r r^{s}}+\frac{g}{a} \times \frac{m-t}{m r^{6}}+8 \varepsilon .=\frac{d}{d r^{3}} \times \overline{\frac{e}{d r}+\frac{f}{d r^{2}}+\frac{g}{d r^{3}}+\& \mathrm{c} .}$ $-\frac{d p}{a m r^{3}} \times \frac{e q}{d p r}+\frac{s f}{d p r^{2}}+\frac{g t}{d p r^{3}}+\& c .=\frac{d}{a r^{3}} \times \hat{A}-\frac{d p}{a m r^{3}}$ \times ÁB.——Q.E.D. . ${ }^{(}$

 Note (E). See the Scholium to Quest. X. Page 36.
 According to the calculations, the time in , which the first yearly payment of a reversionary annuity becomes due, is the end of the year in which the event happens that entitles to it, however little or much of the year may then happen to be unelapsed. And this, likewise, is the time when a reversionary sum becomes due. Those who know how the calculations of the values of reversions are instituted, must know this. But an annuity, the first payment of which is to be made at the same time with another payment of a sum in hand, sufficient to buy an equal annuity, is worth one year's purchase more than that sum. For instance. Reckoning interest at 4 per cent. and r being $£_{1}$ increased by its interest for a year, or 1.04
 $\frac{1}{r}+\frac{1}{r^{2}}+\frac{1}{r^{3}}, \& c .=\neq 25$ is the present value of an estate of $£^{1}$ per annum for ever. . That is, it is the value of it, supposing the first rent of it is to be paid a year hence.-If the first rent is to be received immediately, or at the same time with another payment of \boldsymbol{E}^{25}, it is worth one year's purchase more, or equivalent to $\mathscr{E} 26$.-I have not found, that any of the writers on annuities and reversions; have attended to this observation: It suggests a correction necessary to be applied to the common solations of several important, problems: particularly to the 21 st and 22d in Mr. Simpson's Treatise on Amuities, and the $26 \mathrm{th}, 27 \mathrm{th}, 32 \mathrm{~d}, 33 \mathrm{~d}$, and 40th problems in his Select Exercises; and to all other problems of the same kind in other writers. There can vol. 1.

 A 1
 be no great occasion for being more explicit. It will not, however, be amiss to add the following demonstration. - $\frac{1}{n}$ is the present probability that a life whose complement is n will fail in any one assiguable year of its duration. $\mathrm{S} \times \frac{1}{n r^{2}}+\frac{1}{n r^{2}}$.
 $+\frac{1}{n r^{3}}, \& x C_{0}(n)$, or the present value of $£_{1}$ per annum for n years, maultiplied by $\frac{\mathrm{S}}{n}$, is the present value of the sum or legacy denoted by S, payable at the failure of the given life. Therefore, (n being 56 ; the life 30 ; interest 4 per cent. $r=1.04$; the sum \mathscr{E}^{25}) the value of the expectation, by Mr. De Moizre's hypothesis, is 9.91 g .

 Further. The value of \mathscr{E}_{1} to be received at the ond of a year, provided the life whose complement is n fails, is the probability of the failure of thie Life moltiplied by, $E^{1} 1$ discounted for a year, or $\overline{1-\frac{n-1}{n}} \times \frac{1}{r}$. In like mananer; the value of $\mathbb{E}!$ to be received at the end of two years, if the same life fails in 2 years, is 1 - $\frac{n-2}{n} \times \frac{1}{r^{2}}$ And, therefore, the walue of all the possible payments of an estate or annuity of , 1 for ever, to be entered upan after the given life, is $\overline{1-\frac{n-1}{n}} \times \frac{1}{n}+1$. $\overline{\frac{n-2}{n}} \times \frac{1}{r}+1-\frac{n-3}{n} \times \frac{1}{r^{2}} \& c(n)+\frac{1}{r^{n+1}}+$

 $\frac{1}{n+2}, \& c$. or $\frac{1}{r}+\frac{1}{r^{2}}+\frac{1}{r^{3}}, \& \dot{c} .-\frac{n-1}{n r}+\frac{n-2}{n r^{2}}+$ $\frac{\overline{n-3}}{n r^{3}}, \& c$. that is, the value of the life subtracted from the perpetuity; or, in this example, E14.684, 2 (the value of a life at 30) subtracted from 25 ;
 the same ratio with 104 to 100 , or 26 to 25 , agreeably to the rule in the Scholium (ε).
 (8) The difference between the values of reversionary sumens and reversionary estates (which was first pointed out in this Note) does not depend on the hypothesis of an equal decrement, but may be as readily demonstrated from the real probabilities of life. Supposing $a, b, c, d, c, \& c$. to represent the same quantities as in Note (β), the value of the sum S , to be seceived on the death of A, will be properly expressed by the series $\frac{\mathrm{S}}{a} \times \overline{\frac{a-b}{r}+\frac{b-c}{r^{2}}+\frac{c-d}{r^{3}}+\& \mathrm{c} .}=\mathrm{S} \times$ $\overline{\frac{1}{r}+\frac{b}{a r^{2}}+\frac{c}{a r^{2}}+\frac{d}{d r_{4}} \& c .-S \times \bar{b} a r+\frac{c}{a r^{2}}+\frac{d}{a r^{3}}+\& \mathrm{c}}$. $=\mathrm{S} \times \frac{\overline{\mathrm{A}+1}}{r}-\mathrm{A} .=\frac{\mathrm{S} \cdot \overline{\mathrm{I}} 1}{r} \times \overline{\mathrm{P}-\mathrm{A}}-\mathrm{P}$ denoting the perpetuity, and A the value of an annuity on the life of A).- But in the case of an annuity or estate, the value of the reversion of \mathbb{E} per annum after the death of A will be $=\frac{a-b}{a r}+\frac{a-c}{a r^{2}}+\frac{a-d}{a r^{3}}+\& \mathrm{c} .-(t)+\frac{1}{r^{t}+1}+\frac{1}{r^{t}+2}+$ $\frac{1}{r^{t}+3}+\& c$. (t denoting the number of years between the age of A and that of the last surviving life in the table of observations). The sum of these two series is easily found $=P$ A. -If S represent a sum equal to the perpetuity of \& 1 per amn. or, in other words, if S be taken $=\frac{1}{r-1}$, it will appeer that the value of the reversion of an ostate is to the value of the reversion of an equivalent sum as P-A ta $\frac{P-A}{r}$, or as r to 1 , agreeable to what has been observed above.

 - Note (F). Quest. XIII. Page 48.

 W HEN I here call 48 the mean age of all married men, and 40 the mean age of married women, I do not intend to suppose, that there are as many married persons who exceed these ages, as there are who fall short of them. It is likely that the latter are more numerous; and it is necessary that this should be the case, torender the supposition I make just.-If all marriages commenced at 33 for the man, and 25 for the woman, one half of them would be dissolved by the time the men were 50 , and the women 42 ; for (by the Hypothesis, and also nearly by the Breslaw, Norwich, and Northampton tables) there is an equal chance for the joint continuance of two lives whose ages are 25 and 33, seventeen years. Forty-two and fifty then would be properly the mean ages at which widowhood would commence : meaning by these " the "'ages on each side of which equal numbers are " left widows and widowers." But, though in this case half the marriages of every year would be dissolved in 17 years, they would not be all dissolved in twice that time. So far would this be from happening, that about a 7 th part would continue beyond twice 17 years; nor would it be certain. that they would be all dissovved till near the extremity of the possible extent of life. Though, therefore, an equal number of marriages would be dissolved, or an equal number of widows and widowers left before 50 and 42 and afterwards, yet the xges of the latter would, one with another, much more exceed 50 and 42 , than the ages of the former (that is, of the widows and widowers left before 50 and 42) would fall short of them. And the number of marriages also in the world among persons
 persons of greater ages than these, would be much fewer than among persons of lesser ages.-In other words: The period, at which the marriages that have been contracted are half dissolved, is not the period at which the number of marriages constantly existing is equally divided, but this period falls some years sooner; and the period I have in view falls in that part of the interval between these two periods, where the greater ages of the marriages on one side, are just enough to compensate (in such a calculation as that I have given) their deficiencies in number, compared with the number of marriages on the other side.
 : In short. Suppose 35 marriages every year, between persons 33 and 25 b. In 12 years there would be half as many in the world, as could possibly arise from such a number of yearly weddings. In 17 years, half every set would be extinct. The expectation of every marriage would be 19 years, by Prob. 21 of Mr. De Moivre's Treatise on Annuities, or by the note (K) in the following notes; That is, taking them all together, they would exist just as long as an equal number of single persons, supposed to be sure of living just 19 years, and na more : or, as long as an equal number of single persons, all 48 years of age, supposed to be subject to the common laws of mortality, One with another, then, they will be all extinct in 19 years; the marriages which continue beyond this term, though fewer in number, enjoying amiong them just as

 much more duration, as those that fall shert of it enjoy less. Widows, then, at a medium, will commence widowhood at 44 (that is, 25 increased by 19) years of age, and widowers at 52 . The values, therefore of the lives of the former, when they commence widowhood, will, one with another, be the same with the value of a life at 44 ; or, (reckoning interest at 4 per cent.) 12.5 years purchase, in one present payment, (the annuity to begin at the end of a year) ; and their expectation of life will be 21 years, or balf the difference between 44 and 86 . The value of the lives of the latter will be 10.92, and their expectation 17 years.-The whole number of marriages constantly existing, which would result from 35 supposed to commence annually, would be 19×35, or 665 ; and 53 years (the difference between 33 and 86) would be the time in which they would increase to this number-The chance of survivorship would be the odds of 69 to 53 , by Prob. 18th, Mr. De Moivre on Annuities; that is, in 53 years, 35 relicts of these marriages would be left every year, and the numbet of widows would be to the number of widowers, as 69 to 53 ; or 19.8 widows would be left annually, and 15.2 widowers. The maximum of widows in life together, if none married, would be 21×19.8, or 116 ; and they would increase to this number in 114 years (or 61 years after the number of marriages had arrived at a maximum-The maximum of widrevers would be 15.2×17, or 258 ; and they would increase to this number in 106 years.

 An easy method may be hence deduced of solving the question which occasions this note.-If the number of the members of the establishment I have supposed is 665, and the mean ages at which marriage may be deemed to commence are

 25 and $3.3,19.8$ widows will (it has just appeated) be leff every year; and the values of their lives, when they commence widowhood, will be, one with another, $12 \frac{\pi}{2}$ years purchase. An annuity of E 20 will, therefore, be worth, to each widow, 250; and 19.8 sach annuities must be worth $\nsupseteq 4950$, which, consequently, is the animual income necessary for the support of the establishment, the first payment to be received immediately: or $\mathscr{E} 7.44$ from each of the 665 members; which answers nearly to the determinationin p. A8.

 In the latter part of Essay II. Vol. II. it is shewn, that observations determine the chanice of survivorship in favour of the wife in marriage, to be really so great as 3 to 2 ; and in sorthe circumstances greater. It is there observed, that in order to account for this from the difference of age between men and their wives, this difference must: be at lenst 12 years, and the mean ages of all who marry annually must be supposed to be about 28 and 35. In this case, 19, as before, will nearly be the expectation of all marriages. The thean age at which widows and widowers will commence suct will be 42 and 54 . The number of annual marriages necessary to keep up 665 marriages constantly existing, will be 35 . The number of widows left annually, by such a namber of marriages, will be 21 ; and the values of their lives, at the time they commence widowhood, will be 12.85 years purchase by Table VI. Vol. II. and, therefore, the whole annual income necessary for the sapport of the supposed estad blishment, will be ${ }^{5} 5397$, or an annuad payment; beginning immediately, of $\mathcal{E}^{8.11}$ froth each mernber-The number of widows on such an establishment will, in 63 years, grow, if none marry, to 462 ; and the number of widowers to 224.
 -It may be depended on, that all this would happen as far as Dr. Halley's Table, or the Tables for Norwich and Northampton, exhibit the true state of human mortality.

 Among the ministers and professors in ScotLAND, the number of married men being 667, or nearly that here mentioned, the number of annual weddings has, for many years, been at an average 30 , and the number of widows left annually $19 \frac{1}{4}$; and, therefore, the chance of survivorship in favour of the wife, as 19.2 to 11.8, or 5 to 3. This is not more different from the results I have given, than might have been expected; and the chief reason of the difference is, that the expectations of single and joint lives among the ministers and their wives in Scotland are greater than those given by Dr. Halley's, and the other tables of observation.-These tables give the expectations of lives as they are among the bulk of mankind in moderate towns. The expectations of lives among the better sort of men, living mostly in country villages and parishes, are much greater. The fact is, that among the ministers in Scotland, the expectation of a single life, at the age of 27 , is near 4 years greater; and, of joint lives, about three years greater, than the same expectations by Dr. Halley's Table. See the latter end of the 2d Essay in the next volume.

 I cannot help just mentioning another remark here.-It may be observed, that supposing no second marriages, and, at the same time, that the odds for the woman's surviving in marriage is 3 to 2, the number of widuws in the world would be double the number of widowers. But it has been found, in fact, that the number of widows is, in some situations, five times, the number of widowers. How this is to be accounted for, I have shewn in the Essay just referred to.

 ## Note_(G). Question XIV. Page 52.

 LET r be $£_{1}$ increased by its interest for one ýear; t the given time or number of years for which the assurance is to be made; $a, b, c, \& c$. the probabilities taken out of a table of observarions, that the person whose age is given shall live $1,2,3, \& c$. years; and P the probability that he shall live t years, Then $\frac{1-a}{r}+\frac{1-\dot{b}}{r^{2}}+\frac{1-c}{r^{j}}, \& \mathrm{c}$, $(t-1)+\frac{1-\mathrm{P}}{r^{2}}+\frac{1-\mathrm{P}}{y^{2}+1}+\frac{1-\mathrm{P}}{r^{t+2}}, \& \mathrm{c},=\frac{1}{r}+\frac{1}{r^{2}}+$ $\frac{1}{r^{3}}$ scc. $(t)-\frac{\bar{a}}{r}+\frac{b}{r^{2}}+\frac{c}{r^{3}}$, \&c. $(t-1)+\frac{p}{r^{t}}+$ $\frac{1-\mathrm{P}}{r^{7}} \times \frac{1}{r}+\frac{1}{r^{2}}+\frac{1}{r^{3}}$ \&cc. will be the exact value of an annuity to be entered upon at the failare of the given life, provided it happens in t years. And the rule is nothing but this yalue expressed in words. In a similar manner may be demonstrated the other rule for finding the values of assurances for a given time, on two joint lives, or the longest of two lives. *

 * Having given a different and more concise rule for answering this Question, (See note, p. 53,) it may not be improper here to insert the demonstration of it.-Let a represent the number living in the table at the age assigned, let $b, c,-d_{0} e_{p}$ \&c. represent the same number at the end of $1,2,3,4,8 x c$. years; then will the value of the sum S depending on the failure of the life within the term proposed be $=\mathbf{S} \times$ $\frac{\frac{a-b}{a r}+\frac{b-c}{a r^{2}}+\frac{c-d}{a r^{3}}+\frac{d-e}{a r^{4}} \cdots(t)=\frac{S}{r} \times 1+\frac{b}{a r}+}{\frac{c}{a r^{2}}+\frac{d}{a r^{3}}-\cdots(t-1)}-S \times \frac{b}{a r}+\frac{c}{a r^{2}}+\frac{d}{a r^{3}}+$ $\frac{e}{\text { ar }} \boldsymbol{l}-(\mathrm{t})$. If B^{\prime} denote the value of an annuity of \mathbb{E}_{1} on the given life for one year less than the term proposed, and B the same value for the whole term, the preceding series will be $=S \times \frac{\overline{1+B^{\prime}}}{r}-B \ldots$ Q.E.D.

 Note (H.) Question XV. Page 61.
 ILET r signify as before; S the given sum to be assured; t the given time; N and n the number of the living in the table of observations, at the age of B and A respectively; $\mathrm{A}, \mathrm{B}, \mathrm{C}, \& \mathrm{c}$. and $a ; b, c, \& c$. the number of the living in the table, at the end of $1,2,3,8 \mathrm{cc}$. years from the ages of \mathbf{B} and $\mathrm{A} ; \mathrm{D}, \mathrm{D}, \mathrm{D}, \mathrm{D}, \& \mathrm{c}$. and $d, d, d, d, \& \mathrm{c}$. the decrements of life in the table, at the end of $1,2,3,8$ cc. years from the same ages. Then, by reasoning in the same manner with Mr. Simpsom, in p. 316, \&cc. Select Exercises, it will appear that $S x$

 \bar{C}
 is the exact answer to Question XV. and the rula is as near an approximation to it as there is reason to desire.

 - In the same manner, retaining all the same symbols, it may be found, that the answer to Question XVI. is

 $(t-1)$

 \&c. $(l-1)+\frac{\mathrm{S}}{2 \mathrm{~N}} \times \frac{\mathrm{D} d}{n r}+\frac{\mathrm{D} d}{n r^{2}}+\frac{\mathrm{D} d}{n r^{3}}, \& \mathrm{c}$. (t).
 But $\frac{\mathbf{D}}{\mathbf{N},}+\frac{\mathrm{D}+\underset{r^{\prime}}{ }}{\mathbf{N} r^{2}}+\frac{\mathrm{D}+\mathrm{D}+\mathrm{D}}{\mathbf{N}} \underset{11}{\mathbf{N} r^{3}}, \& c .(t-1)$ is the same with the excess of the value of an annuity certain for a number of years less by one year than the given term, above the value of an annuity on the life of A, for the same number of years; from whence the reason of the rule for solving this question may be easily discovered (ζ).
 (弓) The solution of the 15 th question may be deluced in a similar, but rather more accurate, manner from the first of the two rules given in Note (O); where the value of the reversion for t years is expressed by the two series $\frac{S}{2 a b} \times$ $\overline{\frac{\bar{c} a^{\prime}}{r}+\frac{d a^{\prime \prime}}{r^{2}}+\frac{e a^{\prime \prime \prime}}{r^{3}} \cdots(t)}+\frac{\mathrm{S}}{2 a b} \times \overline{\frac{\overline{a^{\prime}}}{r}+\frac{c a^{\prime \prime}}{r^{*}}+\frac{d a^{\prime \prime \prime}}{r^{3}} \cdots(t)}$. If α denote the sum of the decrements of life from the age of A for t years divided by t (which may be called the complement of A's life for the given term), and B and B the values of an annuity on the life of B for t and $\overline{t-1}$ years respectively, the sum of these two series may be found $=\frac{\text { Sas }}{2 a}$ $\overline{\times B+\frac{B}{B}+1}$.

 In like manner, the solution of the 16 th Question may be derived from the second of the two rules given in Note (O);-the series expressing the value of the reversion in this case being $\frac{\mathrm{S}}{2 a b} \times \frac{\overline{\overline{b-c \cdot a} a^{\prime}}}{r}+\frac{\overline{\overline{-d} \cdot a^{\prime}+a^{\prime \prime}}}{r^{2}}-\cdots(t)+\frac{\mathrm{S}}{2 a b r}$ $x \frac{\overline{\overline{c-d_{0}} a^{\prime}}}{r}+\frac{\overline{d-c} \cdot a^{\prime}+a^{\prime \prime}}{r^{2}} \ldots(t-1)$. Let β denote the com-
 plement of B 's life for t years, A and A the values of an annuity on the life of A for t and $t-1$ years, and N and \mathbf{N} the values of an annuity certain for those respective terms; then will the above series be found $=\frac{\mathrm{S} . \beta}{2 b} \times$ $\overline{N-A}+\frac{\bar{N}-A}{r}$. ments of A's life for t years, in the first of these rules, and the decrements of B's life in the second are equal, that the exact value of the reversion is obtained; and if the term do not exceed 10 or 12 years, the values are always so nearly true as not to require greater accuracy. This also is the case in general with regard to Dr. Price's rules ; against which there can be no objection, excepting the application of Mr. De Moivre's hypothesis in one part of them, which it is best eittirely to exclude from the doctrine of survivorships. . M.

 ## Note (I). Page 149.

 SUPPOSING r to signify as in the last notes, and n to be the complement of a given life; the present ralue of $£ 1, £_{2}, £_{3}, \&$ c. payable at the end of $1,2,3, \& c$. years to t years, but subject to failure when the life fails, is $\frac{n-1}{n r}+\frac{n-2 \times 2}{n n^{2}}+$ $\frac{\bar{n}-3 \times 3}{\mu r^{3}}$, \&c. continued to t years; which expres sion is equal to $n \times \frac{\overline{n-1}}{n r}+\frac{n-2}{n r^{2}}+\frac{n-3}{n r^{3}}$, \&c. (t) $-n \times \frac{\overline{n-1}_{n^{2}-1}^{2}}{}+\frac{\overline{n-v^{2}}}{n^{2} r^{2}}+\frac{\overline{n-3}^{2}}{n^{2} r^{r}}, \& c .(t)$.

 To find; therefore, the value of an annual payment dependent on a given life, to begin with $\mathfrak{E l}$ and to increase at the rate of $£_{1}$ every year after the first, for a given term; find the value of an annuity on the given life for the given term; and also the value for the given term of an annuity on two joint lives both equal to the given life. The difference between these two values multiplied by the complement of the given life, will be the value sought.-If such a course of payment, instead of beginning at the end of a year, is to begin immediately, and to be made at the beginning of every year till $t+1$ payments are made in t years; add to the preceding value the value increased by unity of an annuity on the given life for t years, found, by Question VI, and the sum will be the value sought. And this value, divided by the present value of what may happen to remain of the given life after t years, found by the same çuestion, will give the annuity to which such a series of increasing annual payments, beginning immediately,
 will entitle for the remainder of the given life after t years.

 If such a course of payment is to begin at the end of a year; and to be ceontinued during life (thate is, if $t=n$) it is obvious, that its value will be the complement of the life multiplied by the difference between the value of the life, and the value of two joint lives having the same common age with it ; and that if it is not to commence till the end of a given number of years, its value will be the value for a life so many years (lessened by one) older than the given life, and multiplied by the value of $£_{1}$ payable at the end of a number of years, and also multiplied by the probability that the given life will exist for the same number of years.-Supposing, for instance, the given life 30 years of age, and such a course of payment to begin when it has completed its 56 th year, the value would be the value of a life aged 55, diminished by the value of two joint lives both 55, and the remainder multiplied by the complement of a life aged 55 , and also by the product of the probability that a life aged 30 will exist 25 years, into the value of $£ 1$ payable at the end of 25 years.-The value thus computed will, in this case, come out $£ 19$ nearly, in a single present payment, reckoning interest at 4 per cent. and taking the probabilities of the duration of life from the Northampton Table of Observations.

 With the assistance of these rules, all that is said in p. 148 may be investigated. But more particular directions for compating the values of amnuities of this sort may be found in Mr. Morgan's Treatise on LifeAnnuities and Assurances, p. 119, 8tc.

 ## Note (K). See Essay I. Vol. II.

 THE sum of the probabilities that any given lives will attain to the end of the 1 st , 2d, 3d, \&c. years from the present time to the utmost extremity of life (for instance, $\frac{45}{45}+\frac{44}{48}+\frac{43}{75}$, \&c. to $\frac{i}{46}=22 \frac{1}{2}$ for lives of 40, by the hypothesis) may be called their expectation, or the number of payments due to them, as yearly annwitanits. The suma of the probabilities that they will attain to the end of the $1 \mathrm{st}, 2 \mathrm{~d}, 3 \mathrm{~d}$, \&c. half years, (or, in the particulat case specified, $\frac{91}{9} \frac{1}{2}+\frac{90}{92}+\frac{89}{92}+\frac{88}{92}, \& c .=$ $\frac{91}{2}$ half years, or $22 \frac{3}{4}$ years) is their expectation as kalf-yearly annuitants. And the sums just mentioned of the probabilities of their attaining to the end of the $1 \mathrm{st}, 2 \mathrm{~d}, 3 \mathrm{~d}$, \&8c. moments (equal in the same particular case to 23 years) is properly their expectation of life, or their expectation as annuitants secured by land.

 Mr. De Moivre has omitted the demonstrations of the rules he has given for finding the expectations of lives, and only intimated in general, that he discovered them by a calculation deduced from the method of fluxions. See his Treatise on Annuities, page 66. It will, perhaps, be agreeable to some to see how easily they are deduced in this method, upon the hypothesis of an equal decrensent of life.

 Let \dot{x} stand for a moment of time, and n the complement of any assigned life. Then $\frac{n-\dot{x}}{n}, \frac{n-2 \dot{x}}{n}$ $\frac{n-3 \dot{x}}{m}, 8 x c$. will be the present probabilities of its continuing to the end of the $1 \mathrm{st}, 2 \mathrm{~d}, 3 \mathrm{~d}, \& \mathrm{c}$ moments; and $\frac{n-x}{n}$ the probability of its continuing
 to the end of x time. $\frac{n-x}{n} \times \dot{x}$ will therefore be the fluxion of the sum of the probabilities, or of an area representing this sum, whose ordinates are $\frac{2-r}{n}$, and axis x.-The fluent of this expression, or $x-\frac{x^{2}}{2 n^{2}}$, is the sum itself for the time $x ;$ and this, when $x=n$, becomes $\frac{1}{2} n$, and gives the expectation of the assigned life, or the sum of all the probabilities just mentioned, for its whole possible duration.-In like manner: since $\frac{\overline{n-1})^{2}}{n^{2}}$ is the probability that two equal joint lives will continue x time, $\frac{\overline{n-n} \eta^{2}}{n^{2}} \times \bar{x}$ will"be the fluxion of the sum of the probabilities. The fluent is $x-\frac{x^{2}}{n}+\frac{x^{3}}{3 n^{2}}$, which, when $x=n$, is $\frac{n}{3}$, or the expectation of two equal joint lives. Again: since $\frac{n-r}{n} \times \frac{2 x}{n}$ is the probability that there will be a survivor of two equal joint lives at the end of x time, $\frac{n-x}{n} \times \frac{2 x}{n} \times \frac{2}{x}$ will be the fluxion of the sum of the probabilities; and the fuent, or $\frac{x^{2}}{n}-\frac{2 x^{3}}{3 n^{2}}$ is (when $x=n$) $\frac{1}{3} n$, or the expectation of survivorship between two equal lives ; which, therefore, appears to be equal to the expectation of their joint continuance. The expectation of two unequal joint lives, found in the same way, is $\frac{m}{2}-\frac{m^{2}}{6 / n}, m(n)$ being the complement of the
 (n) The expectation of two unequal joint lives is $=\frac{m-x}{m}$ $\times \frac{n-x}{n} \times \dot{x}$, whose fuent (when $x=m$) is easily found $=$ $\frac{m}{2}-\frac{m m}{6 n}$.
 oldest life, and n the complement of the youngest. The whole expectation of survivorship is $\frac{n}{2}-\frac{m}{2}+$ $\frac{m^{2}}{3 n}$ (9). And the expectation of survivorship of the oldest will be to the expectation of survivorship of the youngest, as $\frac{m^{2}}{6 n}$ to $\frac{n}{2}-\frac{\dddot{m}}{2}+\frac{m^{2}}{6 n}$. It is easy to apply this investigation to any number of joint lives, and to all cases of survivorship.

 It may be observed, concerning the first of the fluents here given, that it expresses not only the expectation. of a given life for the time x, and therefore its whole expectation when $x=n$, but likewise the number of persons alive, to which one person added annually to a society, at a given age, will increase, in x time.-Thus: Suppose one
 (9) The expectation of survivorship due to the oldest life is expressed by the fluxion $\frac{m-x}{m} \times \frac{x}{n} \times \dot{x}$, whose fuent (when $x=m$) is $\frac{m m}{6 n}$. The expectation 'of survivorship due to the youngest life for m years is the fiuent of $\frac{n-x}{n} \times \frac{x}{m}$ $\times \dot{x}$; which (when $x=m$) is $\frac{m}{2}-\frac{m n}{3 n}$. But this life has a further expectation, after m years, expressed by the fiuent of $\frac{\overline{n-m}-x}{n-m} \times \frac{n-m}{n} \times \dot{x}$, which (when $x=n-m$) will be $\frac{n}{2}-m+\frac{m m}{2 n}$. The sum of these two fuents, or $\frac{n-m}{2}+\frac{m m}{6 n}$ will therefore be the whal expectation of survivorship due to the joungest life. And this expression added to $\frac{\mathrm{mm}}{6 n}$ (which has been found above to be equal to the expectation of survivorship due to the oldest life) will give $\frac{n}{2}-\frac{m}{2}$ $+\frac{m m}{3 n}$ for the whole expectation of survivorship due to both lives.
 vol. 1.
 annuitant, whose age is 28 , (and whose complement of life, therefore, is 58 , or expectation of life 29) to come upon a society every year ; the number of annuitants alive, deduced from hence, will in x years, be $x-\frac{x^{2}}{4 \times 2 y}$, or $\frac{4 \times 29-x}{4 \times 29} \times x$; and, therefore, the number of annuitants alive, deduced in thè same time from p annuitants left annually at the same age, will be $\frac{4 \times 29-r}{4 \times 29} \times p x$. - In like manner, the 2 d fluent, or $\frac{x^{3}}{3 n^{2}}-\frac{x^{3}}{x}+x$, gives the number of marriages in being together, that will, in x years, grow out of one yearly marriage, between persons of equal ages, whose complement of life is n. If they are of unequal ages, and the complement of the oldest life is m, and of the youngest n, this number will be $\frac{x^{3}}{3 n m}-\frac{n+m \times x^{2}}{2 n m}+x$. And if the number of years is required, in which any given number of yearly marriages, between men and women at given ages, will increase so far as to be in any given proportion to the greatest number that can possibly grow out of such marriages, this expression must be made equal to the expectation of the joint lives, or of each marriage, multiplied by the fraction expressing the given proportion; and the root of the equation will be the answer. Thus: it may be found, that one marriage every year, between persons 33 and 25 years of age, would in 10 years increase to 8.35 ; in 15 years to 11.38 ; and in 53 years, to 19 , or their greatest possible number; and, consequently, that 35 such yearly marriages, would, in 10 years, increase to 292 ; in 15 years to 398 ; and in 53 years, to 665 .-And if it is enquired in what number of years 35: such yearly marriages would increase to half the number in being together, possible to
 be derived from them, the value of x, in the cubic equation $\frac{x^{2}}{3 m m}-\frac{\overline{n+m} \times x^{2}}{2 n m}+\ddot{x}=\frac{\bar{m}}{2}-\frac{m^{m}}{6 n} \times \frac{1}{2}$, must be found ; which, in the present instance, is nearly 12.

 I have, in some parts of this work, had occasion to make such deductions as these. See note (A), and note (F); and Questions III. page 10, and XIII. page 46.

 Note (L). Chapter IV. Page 208.
 LET r signify \mathscr{E}_{1} increased by its interest for one year.

 V the perpetuity.
 n the difference between the age of the youngest life, and 86 ; or its complement.
 m the complement of the oldest life.
 \mathbf{P} the value (in Table II. Vol. II.) of an annuity certain for m years.

 And the exact value of any two given joint lives, according to the hypothesis of an equal decrement of life, will be $\mathrm{V}-\frac{\mathrm{V}+1}{n} \times \overline{\overline{n-m-2} \mathrm{~V}-1} \times \frac{\mathrm{P}}{m}$ $\mp 2 \mathrm{~V}(x)$. Example:

 Let
 (x) This general rule is taken from Mr. Simpson's Doctrine of Annuities, and is easily demonstrated by the assistance of the Theorems in the 5th Chapter in this volume, page 257. The series expressing the value of an annuity on two joint lives, whose complements are n and m, is known to be $=$ $\frac{m-1}{m} \times \frac{n-1}{n r}+\frac{m-2}{m} \times \frac{n-2}{n r^{2}} \ldots(m)=\frac{1}{r}+\frac{1}{r^{2}}+\frac{1}{r_{3}}$ $\ldots(m)-\frac{m+n}{m n} \times \overline{\frac{1}{r}+\frac{2}{r^{2}}+\frac{3}{r^{3}}+, 8 c \ldots \ldots(m)}+\frac{1}{m n}$ $\times \frac{1}{r}+\frac{4}{r^{2}}+\frac{9}{r^{3}} \cdots(m)$. By the Theorems: just referred to, the first of these series may be found $=$ $\frac{1}{\overline{r-1}}-\frac{1}{x_{0}{ }^{m} r-1} \cdots$ the second $=-\frac{m+n}{m n} \times \frac{r}{\overline{r-1} 1^{2}}+$ $\left.\frac{m m+m n}{m n} \times \frac{1}{r_{0}{ }^{n} r-1}+\frac{m+n}{m n} \times \frac{r}{r \cdot m r-1}\right)^{2}$, and the third $=\frac{r^{2}+r}{m n_{0} r-11^{3}}-\frac{m m}{m m r^{m}} \times \frac{1}{r-1}-\frac{2 m r}{m n r^{m}} \times \frac{1}{r-11^{2}}-\frac{r^{2}+r}{m n r^{m}}$ $x=\frac{1}{1=10^{3}}$-Adding these different series together their sum

 Let the ages be 27 and 38 ; and the rate of intersest 4 per cent. Then $n=59 . m=48 . \mathrm{V}=25$ $\mathrm{P}=$
 will be $=\frac{1}{r-1}-\frac{m+n}{m n} \times \stackrel{r}{r-1)^{2}}+\frac{n-m}{m n} \times \frac{r}{r m r-1)^{2}}+$ $\frac{r^{2}+r}{m n_{r} r-11^{2}}-\frac{r^{2}+r}{m n_{n} r_{r} r_{r-1}}=\left(\right.$ since $\frac{r}{r=1}$ is $=\mathrm{V}+1$, and $\frac{r^{2}+r}{r-1)^{3}}$ is $\left.=\frac{r}{r-11^{2}}+\frac{2 r}{r-11^{3}}\right) \mathrm{V}-\frac{m+n-1}{m n} \times \frac{\mathrm{V}+1}{r-1}+$

 $\frac{1}{\overline{r-1}}-\frac{1}{r^{m}-1}$ is $=P$; therefore the above expression becomes $=\mathrm{V}-\frac{\mathrm{V}+1}{n} \times \overline{\overline{n-m-2 \mathrm{~V}-1} \times \frac{\mathrm{P}}{m}+2 \mathrm{~V}}$ Q.E.D.

 If the annuity be payable balf-yearly, and $1+\frac{r}{2}$ denote, as in the fifth Chapter of this volume, page 238, $\mathscr{E} 1$ increased by its interest for half a year, the series expressing the value of this annuity will be $=\frac{1}{2} \times \frac{\frac{m-\frac{1}{2} \cdot n-\frac{1}{2}}{2}}{m n \cdot 1+\frac{r}{2}}+\frac{\frac{r}{2}}{2} \times$
 ing in the same manner as in the foregoing theorem, and putting H to represent the value of an annuity certain, payable half yearly, for m years, the general rule in this case may be found $=\mathrm{V}-\frac{\mathrm{V}+\frac{1}{2}}{n} \times \overline{n-\frac{1}{2}-2 \mathrm{~V}} \times \frac{\mathrm{H}}{m}+2 \mathrm{~V}$. If the annuity be payable quarterly, and $1+\frac{r}{4}$ denote \& 1 increased by its interest for three months, the series will be
 $+\& c$.

 $$
 \begin{aligned}
 & \mathrm{P}=21.195 . n-m-2 \mathrm{~V}-1=-40 . \overline{n-m-} \\
 & 2 \mathrm{~V}-1 \times \frac{\mathrm{P}}{m}+2 \mathrm{~V}=50-17.660=32.340 . \text { And }
 \end{aligned}
 $$

 $$
 \mathrm{V}-\frac{\mathrm{V}+1}{n} \overline{\times n-m-2 \mathrm{~V}-1} \times \frac{\mathrm{P}}{m}+2 \mathrm{~V}=25-\frac{2}{3}
 $$

 $$
 \times 32.340=10.748 \text {, the value of two joint lives }
 $$ whose ages are 27 and 38 .

 $+8 c .-\cdots(4 n)$, and its sum $=\mathrm{V}=\frac{\mathrm{V}+\frac{\mathrm{I}}{4}}{\boldsymbol{n}} \times$
 $\overline{n-m-2 V} \times \frac{\mathbf{Q}}{m}+2 \mathrm{~V}, \mathrm{Q}$ representing the value of an annuity certain payable quarterly for m years.-In like manner, if the annuity be payable momently, and i $+\frac{r}{1000, \& \mathrm{cc}}$ denote $\npreceq 1$ increased by its interest for a moment, the general rule for determining the value of the annuity will be $=\mathbf{V} \longrightarrow$ $\frac{\mathrm{V}+\frac{1}{1000,8 \mathrm{cc} .}}{n} \times n-m-\frac{1}{1000,8 \mathrm{cc} .}-2 \mathrm{~V} \times \frac{\mathrm{M}}{m}+2 \mathrm{~V}=$ $\mathrm{V}-\frac{\mathbf{V}}{n} \times n-m-2 \mathrm{~V} \times \frac{\mathrm{M}}{m}+2 \mathrm{~V} ; \mathrm{M}$ representing the value of an annuity certain payable momently for m years.
 Supposing the ages of two lives to be 20 and 36 years, the value of an annuity at 4 per cent. during their joint continuance, and payable either yearly, half yearly, quarterly, or momently will, by Mr. De Moivre's hypothesis, be 11.22711.427...11.565...or 11.629. If their ages be 36 and 61 , the values, will be $7.448 . . .7 .673$...7.793...or 7.901. If both their ages be 36 , the values will be $10.394 . . .10 .600 \ldots$ 10.703...or 10.sos...and if both their ages be 61 , the values will be 6.144...6.374...6.517 ...or 6.60?.
 By comparing the values of the equal joint lives, given above, with the values of the single lives of the same ages, computed in the fifth Chapter (p. 243 and 244), it appears that the differences in the former between annuities payable yearly and those which are payable half yearly, quarterly, or momently, are greater than the differences in the latter ; and therefore that the addition to be made to an annuity on the longest' of two lives, in consequence of its being payable at shorter intervals than a year, will be rather less than the addition to be made on this account, either to the single or the joint lives of the same ages.

 ## Note (M). Chapter III. Page 197.

 IT is plain that the purchaser of A's right, as stated in the first of the questions to which this note refers, cannot get into possession till the year when A and B shall be both dead'; nor then, unless A happens to die last. Now, supposing the common complement of life n; the probability that A and B shall be both dead at the end of, the frst year, and \dot{A} die last, is $\overline{1-\frac{n-1}{n}} \times \overline{1-\frac{n-1}{n}}$ $\times \frac{1}{2}=\frac{1}{2}-\frac{n-1}{2 n}-\frac{n-1}{2 n}+\frac{n-1}{2 n^{2}}$. -In like manner, the probability that they shall be both dead at the end of the $2 \mathrm{~d}, 3 \mathrm{~d}, 8 \mathrm{c}$. years, and that A shall have died last is $\frac{1}{3}-\frac{n-2}{2 n}-\frac{n-2}{2 n}+\frac{n-2}{2 n^{2}} ; \frac{1}{2}-\frac{n-3}{2 n}-$ $\frac{n-3}{2 n}+\frac{\pi-32^{2}}{2 n^{2}}$ \& $\&$. The present value, therefore, of the $1 \mathrm{st}, 2 \mathrm{~d}, 3 \mathrm{~d}, \& \mathrm{c}$. rents of the reversionary estate is $\frac{1}{2 r}-\frac{n^{2}-1}{2 n r}-\frac{n-1}{2 n r}+\frac{n-1 n^{2}}{2 n r}, \frac{1}{2 r^{2}}-\frac{n-2}{2 n r^{2}}-$ $\frac{n-2}{2 n r^{2}}+\frac{\overline{n-2})^{2}}{2 n^{2} r^{2}}, \frac{1}{2 r^{3}}-\frac{n-3}{2 \pi r^{3}}-\frac{n-3}{2 n r^{3}}+\frac{n-3)^{2}}{2 n^{2} r^{2}}, ~ \& \mathrm{cc}$.
 Supposing r to signify $\notin 1$ increased by its interest for a yedr; and the estate to be $£_{1}$ per amn. And the sum of these terms continued in infinitum is the value required.-But $\frac{1}{2 r}+\frac{1}{2 r^{2}}+\frac{1}{2 r^{2}}$, \&cc. is half the perpetuity. And $\frac{n-1}{2 n r}+\frac{n-1}{2 n r}-\frac{n-n^{2}}{2 n^{2} r}$, \&c. $\frac{n-2}{2 n r^{2}}+\frac{n-2}{2 n n^{2}}-\frac{\overline{n-2}!}{2 n^{2} r^{2}}+\frac{n-3}{2 n n^{3}}+\frac{n-3}{2 n n^{3}}-\frac{\overline{n-3} 3^{2}}{2 n^{2}+3^{3}}, \& c$. is half the value of the joint lives, subtracted from half the sum of the values of the two single lives; that
 that is, half the value of the longest of the two lives.
 A similar demonstration may be applied to the other question (λ).
 (λ) The purchaser of A's right, in the 2 d Question, will get into possession in that year in which A either survives B, or dies after him. The value of his expectation in the 1st year will be $=\frac{n-1}{n r} \times 1-\frac{n-1}{n}+\frac{1}{2 r} \times \overline{1-\frac{n-1}{n}} \times$ $\overline{1-\frac{n-1}{n}}=\frac{1}{2 r}-\frac{n-1}{2 n n r} . \cdots$. In the 2d, 3d, 4th, \&c. years, his expectation depending on the samé events will be worth $\frac{1}{2 r^{2}}-\frac{\left.\overline{n-2}\right|^{2}}{2 n n r^{2}}, \frac{1}{2 r^{3}}-\frac{\overline{n-2}^{2}}{2 n n r^{3}}, \frac{1}{2 r^{4}}-\frac{n-\eta^{3}}{2 n n r^{4}}, \& \mathrm{c}$. The present value therefore of the $1 \mathrm{st}, 2 \mathrm{~d}, 3 \mathrm{~d}, \& \mathrm{c}$. rents of the reversionary estate is $\frac{1}{2 r}+\frac{1}{2 r^{2}}+\frac{1}{2 r^{3}}+8 \mathrm{c}, \frac{\overline{n-17^{2}}}{2 n n r}-$ $\frac{\left.\overline{n-2}\right|^{2}}{2 n n r^{2}}-\frac{n-\left.3\right|^{2}}{2 n n r^{3}}-\& c$. -If instead of an estate the value of a given sum were required it would, agteeable to the foregoing demonstrations, be expressed in the first case by $\frac{\mathrm{S} \cdot \overline{\mathrm{r}}-\mathrm{l}}{2 r} \times \overline{\mathrm{V}+\mathrm{BB}-2 \mathrm{~B}}$, and in the 2 d case by $\frac{S . r-1}{2 r} \times \overline{\mathrm{V}-\mathrm{BB}}$ (V denoting the perpetuity, B the value of an annuity on the life of B, and $B B$ the value of an annuity on two joint lives, whose common age is that of B). The latter value therefore according to De Moivre's hypothesis, and in the particular case where the two lives
 -That this is likewise true whatever be the decrements of life, or the ages of A and B, may be proved from the two Theorems in Note (O): For by the 2d of these theorems the value of S is $=\frac{\mathrm{S}}{2} \times \frac{\overline{\beta \cdot \overline{\mathrm{F}-\mathrm{AF}}}}{b}-\frac{c \cdot \overline{\mathrm{P}-\mathrm{AP}}}{b r}-\frac{r-\overline{\mathrm{B}}-\overline{\mathrm{AB}}}{r}$,
 from which it appears that the latter reversion exceeds the ormer by $\frac{S . r-1}{r} \times \overline{B-A B}$, and consequently that the difference between them will be the same in all cases,

 Note (N). Chapter IV. Page 204.
 LET r be $£_{1}$ increased by its interest for one year.

 Let S represent any given interval of time, or number of years, during which the decrements of life in a table of observations continue equal.
 a the number of the living in the table at the beginning of the first year of that interval.
 b the number of the living in the table at the beginning of the year immediately following the same interval.
 P the value of an annuity certain 'for S years.
 p the value of $£_{1}$ due at the end of S years.
 Q the value, in Table VI. in the next volume, of an annuity for the life of a person whose age wants S years of 86 .

 N the value, in strict agreement with the given table of observations, of an annuity on the life of a person whose age is S years greater than the age at which the interval of equal decrements begins. Then,
 $\mathrm{Q}+\frac{b}{a} \times \overline{\mathrm{P}-\mathrm{Q}}$ will be the value, according to the table of observations, of an annuity for S years, on a life of the same age with that at which the interval of equal decrements begins. And
 $Q+\frac{b}{a} \times \overline{\overline{\mathrm{P}-\mathrm{Q}}+p \mathrm{~N}}$ will be the value of an annuity on the whole duration of that life.

 When S represents one year, Q vanishes, and the last expression becomes $\frac{b}{a r} \times \overline{1+N}$; which is the rule for finding, from the value given of any life, the value of a life one year younger $(\dot{\mu})$.

 In
 (μ) The value of an annuity payable balf yearly during any life (A), may be deduced from the value of the same annuity during a life (B), one year younger than A, with nearly

 In like manner, suppasing G to signify the value of two given joint lives by any table of ob-
 nearly as much ease as the values of annuities payable yeary are deduced. Let 6 represent the number of persons living in the Table at the age of B, and $c, d, c, f, \& \mathrm{c}$. the number living at the end of the $1 \mathrm{st}, 2 \mathrm{~d}, 3 \mathrm{~d}$, \&cc. years, from the age of B.' Let r represent the interest of $£ 1$ for a year; and $p=1+\frac{r}{2}$; then will the value of the annuity be $=$ $\frac{b+c}{4 b p}+\frac{c}{2 b p^{2}}+\frac{c+d}{4 b p^{3}}+\frac{d}{4 b p^{4}}+\frac{d+e}{4 b p^{5}}+\& c^{2}$ which may be found $=\frac{1}{4 p}+\frac{c}{4 b} \times \overline{\frac{1}{p}+\frac{2}{p^{2}}+\frac{1}{p^{3}}}+\frac{d}{4 b} \times \overline{\frac{1}{p^{3}}+\frac{2}{p^{4}}+\frac{1}{p^{5}}}$ $+\frac{e}{4 b} \times \frac{1}{p^{5}}+\frac{2}{p^{6}}+\frac{1}{p^{7}}, \&{ }^{2}$. From this series, if the age of \mathbf{B} be very old, the value of the life annuity will be obtained with little difficulty; and having this, the value of an annuity on a life one year younger may be derived from if in the following manner:-Let a denote the number of persons living at the age of (A), who. is one year youngen than B; then, since the series expressing the value of an annuity on the life of the latter is found above to be $=$ $\frac{k+c}{4 b p}+\frac{a}{2 b p^{2}}+\frac{c+d}{4 b p^{3}}+8 c$. the series expressing the value of an amuity on the life of the former will be $=\frac{a+b}{4 a p}+\frac{b}{2 a p^{2}}+$ $\frac{b+a}{4 \pi p^{3}}+8 \mathrm{c}_{0}=\frac{a+b}{4 a p}+\frac{b}{a y^{2}} \times \overline{\frac{3}{2}+\frac{b+c}{4 b p}+\frac{c}{2 b p^{2}}+\frac{c+d}{4 b p^{3}}+8 \mathrm{c}^{2}}$. Therefore if the value of the armuity on the life of B be called M, the value of the annuity on the life of A will be $=\frac{a+b}{4 a p}+\frac{b}{a p^{2}} \times \overline{\frac{1}{2}+\mathrm{M}^{2}}$

 From this Theorem a table may be computed of the values of annuities : payable balf yearly on lives of all ages; and by proceeding in.the same manner a general Theorem may be obtained for compusing aitable of the values of annaities payable quarterly. But the labour of forming a table of this kind will be rendered unnecessary, if we are possessed of the values payable yearly: for I have found that the differences between annuities payable half yearly and yearly are the same, whether. those values be derived from the real probabilities of life and the preceding Theorems, or from M: De Moivre's hypothesis, and the Theorems in the 5 th Chapter in this volume.
 servations, a the living at the age of one of them, c the living at the age of the other, and b and d the numbers living at the two next younger ages, $\frac{a \times c}{\times d \times r} \times \overline{1+G}$ will be the value of two joint lives each one year younger than the former.

 The method of calculating the values of lives from any given tables of observations, described at the end of the fourth Chapter in this volume, is founded entirely on these Theorems; and a distinct explahation of them has been given by Mr. Morgan, in the Second Section of the Second Chapter of his book on the Doctrine of LifeAnnuities and Assurances.
 The expressions $\mathrm{Q}+\frac{b}{a} \times \overline{\mathrm{P}-\mathrm{Q}}$, and $\mathrm{Q}+\frac{b}{a}$ $\times \overline{\mathrm{P}-\mathrm{Q}+p \mathrm{~N}}$, with their investigation, may be found in p. 341, 3d edition of Mr. De Mbiere's Treatise of the Dactrine of. Chances (v). Eut it is necessary
 (v) The Solution of this theorem may be deduced in a manner different from that of M. De Moivre. Let u be the number of persons dying annualli \mathcal{X} in s years, while the decrements of life continue equal, then will the value of the annuity during this term be $=\frac{a-\alpha}{a r}+\frac{a-2 \alpha}{a r^{2}}+\frac{a-c s}{a r^{3}} \cdots+\frac{a-s r^{2}}{a r^{j}}=\frac{1}{r}+$ $\frac{1}{r^{2}}+\frac{1}{r^{3}} \ldots .(s)-\frac{s \alpha}{a} \times \frac{1}{s r}+\frac{9}{s r^{2}}+\frac{3}{s r^{3}} \ldots(s)$. Bur the first series is $=P$, and the second series is $=-\frac{s x}{a_{!}} \times \overline{P-Q}=$ (since $a-b$ is $=s z$) $-\frac{a-b}{a} \times \overline{P-Q}$; and therefore the value of the annuity during the first s years will be $=\mathrm{Q}+$ $\frac{b}{a} \times \overline{\mathrm{P}}-\overline{\mathrm{Q}} \ldots$...The value of the annuity affer, s years (sup. posing. $m, n, o, p, q, \& c$. to denote the number of persons living in the table at the end of $s+1, \sqrt{2-\pi}, s+3, \& c$.
 necessary to observe, that the direction which Mr. De Moivre has given for finding the value of \mathbf{Q} is wrong. In consequence of calculating agreeably to this direction, he gives the value of a life at the age of 42 by Dr. Halley's table greater than the value of the same life by his own hypothesis ; whereas, it is evident that the probabilities of
 years is $=\frac{m}{a r s+1}+\frac{n}{a r s+2}+\frac{o}{a r+3}+\& c .=\frac{b}{a r^{s}} \times$ $\overline{\frac{m}{b r}+\frac{n}{b r^{2}}+\frac{o}{b r^{3}}+\& \mathrm{c} .}=\frac{b}{a} \times p \mathrm{~N}$. If this expression be added to the value of the annuity, found above, for the first δ years, the whole value will be $=\mathbf{Q}+\frac{b}{a} \times \overline{\overline{P-Q}+p \mathbf{N}}$. Q. E.D.

 It is necessary to observe that the series $\frac{a-\infty}{a r}+\frac{a-2 \alpha}{a r^{2}}, \& c$. supposes the annuity to be payable yearly, and therefore that $\frac{s k}{a} \times \frac{1}{s r}+\frac{2}{s r^{2}}+\frac{3}{s r^{3}}, \& c$. expresses the difference, multiplied into $\frac{s x}{a}$, between the values of an annuity certain for s years, and of an annuity payable yearly during the continuance of a life whose complement is s.-The latter of these values, denoted by Q, is given in the 6th Table in the next volume.-But M. De Moivire has deduced the value of Q from the fluxional quantity $\frac{\dot{\boldsymbol{z}}}{n_{0}-1}-\frac{\dot{\boldsymbol{x}}}{n r^{2} .1}$, which, expressing the value of an annnity secared upon land, must necessarily be always greater than the series $\frac{s-1}{s r}+\frac{s-2}{s r^{2}}$ $+8 i c$.; for the one supposes the annuity to be payable to the last moment of existence, while the other makes no allowance for that part of the year which shall have elapsed between its commencement and the extinction of the life. This value of \mathbf{Q} therefore is improperly applied to the foregoing Theorem, where the value of N , as well as the whole solution, is founded upon the principle of the annuity's being payable only at the conclusion of each ycar, provided the life shall continue so long.
 living after 42, being all along less in Dr. Halley's table than in the hypothesis, the value of the life must be also less.-The mathematical reader may easily satisfy himself, that the value of Q ought to be taken, as I have directed, from Table VI. in the next volume.

 I cannot help adding here, that though the rules for finding from the value given of any single or joint lives, the value of any single or joint lives one year younger, are an obvious corollary from the two expressions just mentioned, yet it is probable that Mr. De Moivre did not attend to them, or consider the facility which they give to calculations of this kind; for if he had, he would not probably have insisted so much as he has on his hypothesis of an equal decrement of life; much less would he, in order to obtain an easy method of calculation, have had recourse to that Second Hypothesis, which, in the fourth Chapter in this volume, has been shewn to be so very erroneous.

 Mr. Simpson is, I believe, the first who has given these rules, in his Treatise on the Doctrine of Annuities and Reversions; but in his Select Exercises,..p. 275, he has given a rule for ap. proximating to the values of single lives, according to Dr. Halley's table, which must not be depended on, for I have found it half a year's purchase, and sometimes three-quarters of a year's purchase wrong.

 IN a note at the conclusion of the 3d Chapter ${ }^{*}$, Drs Price refers to the end of this volume for more accurate solutions of his 11 th and 12 th $Q u e s t i o n s$, which had been investigated by myself, and published in the 78 th vol: of the Philosophical Trans-actions.-With the view of fulfilling his intentions in this respect, I shall here, in an abridged manner, insert the solutions to which he refers.

 Solution of Question XI. Page 40. Let a represent the number of persons living in the Table at the age of A, the younger of the two lives, $d^{\prime}, a^{\prime \prime \prime} ; a^{\prime \prime \prime}$, \& c. the decrements of life at the end of the ist, $2 \mathrm{~d} ; 3 \mathrm{~d}, 8 \mathrm{Ac}$. years from the age of $\mathrm{A} ; \mathrm{bi}^{i}$ the number of persons living at the age of B_{3} the oldet of the two lives, and $c, d, e, f, \& c$. the number of persons living at the end of the 1st, 2d, 3d, \&ec. years from the age of B. Then will the value of S (the given sum), depending on the contingency of B 's surviving A, be expressed by $\frac{s}{2 a b} \times$.
 $=\frac{\mathrm{S}}{2 r} \times \frac{\mathrm{Fr}_{0} \mathrm{~F}-\mathrm{AF}-\mathrm{C}, \mathrm{P}-\mathrm{AP}^{\prime}}{b}+\overline{r=1 . \mathrm{B}-\mathrm{AB}} ; \mathrm{Fde}-$ noting a life one year younger, and P a life one year older than B ; $\mathrm{AF}, \mathrm{AP}, \mathrm{AB}$, the values of the joint lives of A and F, A and P, and A and B; and β the number of persons living in the Table at the age of F. But $\frac{f . F}{b}$ is $=\frac{1-1 b}{r}$ and $\frac{c P}{b r}=$ $\mathrm{B}-\frac{c}{b_{r}}$, Hence if V represent the perpetuity

 the above expression, may be found equal to $\frac{5}{2} \times \frac{c \cdot \overline{c \cdot 1-A P}}{b r}+\frac{\overline{r-1} \overline{\mathrm{~V}-\mathrm{AB}}}{r}-\frac{\beta \cdot \mathrm{AF}}{b}$ Having now the value of the given sum payable on the contingency of B's surviving A, the value of the same sum payable on the contingency of A's surviving B is easily obtained; by subtracting the value found above from the whole value of the Reversion after the extinction of the joint lives of A and B .

 Solution of Question XII. page 43. Retaining the same symbols as in the preceding solution, the value of the sum S will in this case $b e=\frac{S}{2 a b} \times$
 $\overline{\overline{b-c} a^{\prime}}+\frac{\overline{c-d} \cdot a^{\prime \prime}}{r^{2}}+\frac{\overline{d-c \cdot a^{\prime \prime \prime}}}{r^{2}}+8 c .+\frac{s}{a b r} \times$ $\frac{a^{\prime} \cdot c-d}{r}+\frac{a^{\prime} 1 a^{\prime} \cdot \overline{d-e}}{r^{2}}+\frac{a^{\prime}+a^{\prime \prime} \cdot a^{\prime \prime} \cdot e=f}{r^{3}}+8 c_{0}=$
 $\frac{\mathrm{s}}{2 r} \times \frac{\overline{\beta r \cdot \overline{\mathrm{~F}-\mathrm{AF}}-\mathrm{c} \cdot \overline{\mathrm{P}-\mathrm{AP}}}}{6}-\overline{r-1} \overline{\mathrm{~B}-\mathrm{AB}}$. or, substituting $\frac{1-\mid-B}{r}$ for $\frac{\beta F}{b}$ and $B-\frac{c}{b r}$ for $\frac{c P}{b r}=\frac{S}{2} *$ $\frac{\overline{c \times \overline{1+A P}}}{b r}+\frac{r-1}{-\sqrt{2}-2 \overline{\mathrm{~B}-\mathrm{AB}}-\frac{\beta \mathrm{AF}}{b}}$ When the value of the reversion is required, depending on the contingency of A's having died after B, the foregoing value is to be subtracted from the whole value of the Reversion after the extinction of both lives.
 M.

 Note

 ## SECTION I.

 I for more accurate solutions of his 11 th and 12th questions (and which have been given in the preceding pages), a further reference is made to the end of this volume, for rules which give in all cases correct values of sums payable on any survivorships between any three lives. These rules have been deduced by myself; and when the above note was written, it was my intention to have submitted the whole of them to Dr. Price, in order that he might use his own discretion in the manner of inserting them. But this is no longer possible, and I am induced therefore to give the greater part of them in this note. But being apprehensive of rendering my ádditions to this invaluable work much too long, I shall only insert the rules, referring the Reader for the demonstrations of them to the 79th, 81st, 84th, and 90th volumes of the Philosophical Transactions.

 From the complicated nature of questions involving survivorships between three lives, it becomes necessary in their solution to have recourse to a great variety of symbols.-In order however to prevent repetition, the same symbols are uniformly made to denote the same quantities in all the following rules, and it may not be improper tơ begin with explaining them.
 A. denote the value of an Annuity on the re-
 B. $\}$ spective lives of A, B, and C.
 D. denotes the value of S on the contingency of C's surviving A (by Quest. XI. Note O).
 E. denotes the same value on the contingency of B's surviving A, found by the same Question.
 F. denotes the value of an annuity on a life one year younger than B.
 G. denotes the value of the absolute Reversion of S after the death of A (by Quest. X. p. 32.)
 H. denotes the value of an annuity on a life one year younger than A.
 K. denotes the same value on a life one year younger than \mathbf{C}.
 L. denotes the value of an annuity on the longest of the three lives A, B, and C .
 M. denotes the value of S, by the first Problem in this Note, on the contingency that A's life shall be the first that fails.
 N. denotes the value of an annuity on a life one year older than A .
 P. denotes the same value on a life one year older than B.
 Q. denotes the value of S , by the 8 th Problem, on the contingency of A or B , being either of them the first that fails.
 R. denotes the value of S on the contingency of B's dying after A (by Quest. XII. Note O).
 S. denotes the given sum.
 T. denotes the value of an annuity on a life one year older than C.
 V . denotes the perpetuity.
 W. denotes the value of S on the contingency of C's dying after A (by Quest. XII. Note O).
 vol. I ,
 C c
 α and
 a and a, denote the number of persons living in a table of observations at the ages of H and A.
 β and b, denote the number of persons living at the ages of F and B .
 x and c, denote the number of persons living at the ages of K and C .
 s, m, and d, denote the number of persons living at the end of the first year from the respective ages of A, B, and C.
 r, denotes the value of $£ 1$ increased by its interest for a year.
 The combinations of two or three of the several letters, A, B, C, F, H, \&c. denote the values of annuities on the joint continuance of two or three of those respective lives.

 ## PROBLEMF.

 To determine the value of a given.sum, payable if \mathbf{A} should be the first that fails of the three lives A, B, and C.

 ## SOLUTION.

 When B or C are the oldest of the three lives the value of the Reversion will be $=\mathrm{S}$ into $\frac{\alpha}{3 c} \times$

 When

 When A is the oldest of the three lives the value will be $=\mathrm{S}$ into $\frac{\beta}{3 b} \times \frac{\bar{a} \frac{\overline{\mathrm{HF}+\frac{1}{2} \mathrm{HFC}}}{a}-\overline{\mathrm{AF}+\frac{1}{2} \mathrm{AFC}}}{a}$ $+\frac{1}{6} \times \overline{\frac{\alpha, \overline{\mathrm{HB}}+2 \mathrm{H} \overline{\mathrm{BC}}}{a}-\overline{\mathrm{AB}+2 \mathrm{ABC}}}+\frac{1}{3 r}$ $\times \frac{\overline{s .} \frac{\mathrm{BN}-\overline{\mathrm{BNC}}}{d}-\overline{\mathrm{AB}-\mathrm{ABC}}}{d}+\frac{m}{66 r} \times$ $\overline{s . \overline{\mathrm{PN}} \overline{-\overline{\mathrm{P}} \overline{\mathrm{C}}}} \bar{a}-\overline{\mathrm{AP}-\overline{\mathrm{APC}}}$.

 When the three lives are equal, the value will $\mathrm{be}=\frac{\mathrm{s}}{2} \times \frac{\overline{r-1}, \overline{\mathrm{~V}-\mathrm{CCC}}}{r}$.

 > PROBLEM II.

 To determine the value of a given sum, payable if A should be the second that fails of the three lives A, B, and C.

 ## SOLUTION.

 When the ages are unequal, the value of the Reversion will be $=\mathrm{D}+\mathrm{E}-2 \mathrm{M}$.

 When the ages are equal, its value will be $=$ $\frac{\mathrm{S}}{3} \times \frac{\overline{r-1}}{r} \times \overline{\mathrm{V}-\overline{3 \mathrm{CC}-2 \mathrm{CCC}}}$

 ## PROBLEM III.

 To determine the value of a given sum, payable on the death of A , if his life should be the last that fails of the three lives A, B, and C .

 ## SOLUTION.

 The value of the Reversion in this case will be either $\mathbf{G}+\mathrm{M}-\overline{\mathrm{D}+\mathrm{E}}$, or $\frac{\mathrm{S} \cdot \overline{r-1} \cdot \overline{\mathrm{~V}-\mathrm{L}}}{3 r}$, according as the ages of the lives are unequal or equal.

 ## PROBLEM IV.

 To determine the value of a given sum, payable on the extinction of the lives of A and B, should they be the first that fail of the three lives A, B, and C.

 ## SOLUTION.

 Let Σ denote the value of S on the contingency of C's surviving B (by Quest. XI. Note• 0), and the general rule, when the lives are unequal; will be $=\Sigma+\frac{5 . x}{6 a} \times \overline{\mathrm{HC}}-\mathrm{HBC}-\frac{\mathrm{S.x}}{3}$
 $\times \frac{\overline{a \cdot \overline{\mathrm{HK}-\mathrm{HBK}}}+\overline{\mathrm{AK}-\mathrm{ABK}}}{2 a}-\frac{2 S . \overline{r-1}}{3 r} \times$
 $\overline{\mathrm{AC}-\mathrm{A}} \overline{\mathrm{BC}}-\frac{\mathrm{S} . s}{6 a r} \times \overline{\mathrm{NC}} \overline{\mathrm{NBC}}+\frac{\mathrm{S} . d}{3 \mathrm{Br}} \times$
 lives be equal, the Rule becomes $=\frac{\mathrm{s} \cdot \overline{r-1}}{3 r} \times$ $\overline{\mathrm{V}-\overline{3 C C}-2 \mathrm{CCC}}$

 ## PROBLEMV.

 To find the value of a given sum, payable on the death of A , if his life should be the first or second that fails of the three lives A, B, and C.

 ## SOLUTION.

 The value of the Reversion, when the lives are anequal, will be $=\mathrm{D}+\mathrm{E}-\mathrm{M}$.

 When the lives are equal, it will be $=\frac{\mathrm{s} \cdot \overline{r-1}}{3 r} \times$ $\overline{2 \mathrm{~V}-\overline{\mathrm{CC}}-\mathrm{CCC}}$.

 ## PROBLEM VI.

 To find the value of a given sum, payable on the death of A, should his life be the second or third that fails of the three lives A, B, and C .
 SOLUTION.

 If the lives be unequal, the value of the Reversion will be $=\mathrm{G}-\mathrm{M}$.----If the three lives be equal, its value will be $=\frac{\mathrm{s} . \overline{r-1}}{3 r} \times \overline{2 \mathrm{~V}-\overline{3 C-C C C}}$.

 ## PROBLEM VII.

 To find the value of a given sum, payable on the death of A , should his life be the first or the last that fails of the three lives \mathbf{A}, B, and \mathbf{C}.
 SOLUTION.

 In this case the value of the Reversion will be $=\mathbf{G}-\overline{\mathrm{D}+\mathrm{E}}+2 \mathrm{M}$, if the lives be unequal, and $=\frac{\mathrm{S} \cdot \overline{r-1}}{3 r} \times \overline{2 \mathrm{~V}-\overline{3 \mathrm{C}-3 \mathrm{CC}+2 \mathrm{CCC}}}$, if the lives be equal.

 ## PROBLEM VIII.

 To determine the value of a given sum, payable on the death of A or B , should either of them be the first that fails of the three lives A, B, and C .

 ## SOLUTION.

 Let Σ, as in Prob. IV. denote the value of S on the contingency of C 's surviving B , and the value of the Reversion, when C is the oldest of the three lives, will be $=S$ into $\frac{x}{3 c} \times$ $\overline{\frac{\beta . \overline{\mathrm{FK}}-\overline{\mathrm{APK}}}{2 b}+\overline{\mathrm{BK}-\mathrm{ABK}}-\frac{\beta \cdot \overline{\mathrm{FC}}-\overline{\mathrm{AFC}}}{6 b}+\cdots .}$ 2. $\overline{r-1} . \overline{\mathrm{BC}-\mathrm{ABC}}$

 $$
 +\frac{m \cdot \overline{\mathrm{PC}-\overline{\mathrm{APC}}}}{6 b r}-\frac{d}{3 c r} \times
 $$

 $\overline{\overline{\mathrm{BT}-\mathrm{ABT}}+\frac{m . \overline{\mathrm{PT}-\mathrm{APT}}}{2 b}}+\Sigma . \cdots-$ But if $\mathrm{A} b e$ the oldest, the value will be $=\mathrm{S}$ into $\frac{\overline{r-1} \cdot \overline{\mathrm{~V}-\mathrm{AB}}}{r}$ $-_{3 a}^{\alpha} \times \frac{\overline{\beta \cdot \overline{\mathrm{HF}}-\mathrm{HFC}}}{6}+\frac{\mathrm{HB}-\mathrm{HBC}}{2}-\frac{\beta \cdot \overline{\mathrm{AF}-\mathrm{AFC}}}{66}$ $+\frac{2 \cdot \overline{r-1}}{3 r} \times \overline{\mathrm{AB}-\mathrm{ABC}}+\frac{m \cdot \overline{\mathrm{AP}-\mathrm{APC}}}{6 / r}+\frac{s}{3 a r} \times$ $\overline{\frac{\mathrm{BN} .-\mathrm{BNC}}{2}+\frac{m . \overline{\mathrm{PN}-\mathrm{PNC}}}{b}} .-$ - And if the thiree lives be equal, the value will be $=\frac{2 . S . \overline{r-1}}{3 r} \times$ V-CCC.

 ## PROBLEM IX.

 To determine the value of a given sum, payable on the death of A or B , should either of them be the second that fails of the three lives A, B, and C .

 ## SOLUTION.

 When the lives are of unequal ages, the value of the Reversion will be $=\frac{\mathrm{s} \cdot \bar{r}-1 . \overline{\mathrm{V}-\mathrm{AB}}}{r}+\mathrm{D}+\Sigma$, $2 Q \cdots-(\Sigma$ denoting the same value as in Prob. IV. and VIII.) When the ages of the three lives are

 ## PROBLEM X.

 To find the value of a given sum, payable on the decease of B or C, should either of them be the last that fails of the three lives A, B, and C .

 ## SOLUTION.

 The value of the Reversion, when the lives are unequal, will be $=\frac{\mathrm{s} . \overline{r-1}}{r-\overline{\mathrm{BC}}-\mathrm{ABC}}+\mathrm{R}+$ $\mathbf{W}-\mathbf{M}$, and when the lives are all equal, it will be $=\frac{28 . \overline{r-1}}{3 r} \times \overline{\mathrm{V}-\mathrm{L}}$.

 ## PROBLEM XI.

 To determine the value of a given sum, payable on the contingency of C's surviving B, provided the life of A shall be then extinct.

 ## SOLUTION.

 When either B or C are the oldest of the three lives, the value of the given sum will be $=\mathrm{S}$ into $\frac{x}{6 c} \times$ $\overline{\frac{\beta .}{\mathrm{FK}-\mathrm{FKC}}} \frac{6}{\overline{\mathrm{BK}}-\mathrm{ABK}}+\frac{\beta}{3 b} \times \overline{\mathrm{FC}-\mathrm{AFC}}$ $-\frac{r-1}{3 r} \times \overline{\mathrm{BC}-\mathrm{ABC}}-\frac{m}{36 r} \times \overline{\mathrm{PC}-\mathrm{APC}}+$ $\frac{d}{\overline{6} c r} \times \overline{\overline{\mathrm{BT}}-\mathrm{ABT}-\frac{m \cdot \overline{\mathrm{PT}}-\mathrm{APT}}{b}}$.

 When \mathbf{A} is the oldest of the three lives, the value will be $=\dot{\Sigma}-\frac{\mathrm{S} . x}{3 c} \times \frac{a . \overline{\mathrm{HK}-\mathrm{HBK}}}{a}+\frac{\mathrm{AK}-\mathrm{ABK}}{2}-$ $\frac{\mathrm{S} . \alpha}{6 a} \times \overline{\mathrm{HC}} \overline{\mathrm{HBC}}-\frac{\overline{r-1}}{3 r} \times \overline{\mathrm{AC}-\mathrm{ABC}} \times \frac{s}{6 r}$ $\times \overline{\mathrm{NC}-\mathrm{NBC}}+\frac{d}{3 c r} \times \frac{\frac{\mathrm{AT}-\mathrm{ABT}}{2}+\frac{s . \overline{\mathrm{NT}-\mathrm{NBT}}}{a}}{2}$ (Σ denoting the same value as in Prob. IV. VIII. and IX.)---When the three lives are equal, the value of the Reversion will be $=\frac{\mathrm{S} \cdot \frac{r-1}{6 r}}{6 r}$ V-3CC-2CCC.

 ## SECTION II.

 THE remaining problems involve a contingency which makes it extremely difficult to give an exact solution of them. By the assistance, however, of the tables inserted at the end of this Note the difficulty may in a great measure be surmounted; but it is to be observed that the rules are unavoidably rendered more complicated, and therefore, in addition to the symbols already used, it has become necessary to have recourse to the following.
 x, y, and z, denote the differences between the respective ages of A, B and C , and of the oldest person in the Table of Observations.
 k, the number of persons living at the age of A at the end of x, y, or z years, according as A, B or C is the oldest life in the Problem.
 p, the like number at the age of B .
 q, the like number at the age of C.
 δ, the probability (by Table II. at the end of this Note) that A dies after C.
 ε, the probability (by the same Table) that C dies after B.
 λ, the probability (by Table I. at the end of this Note) that C survives B.
 μ, the probability (by Table II.) that \mathbf{C} dies after A .
 ξ, the probability (by the same Table) that \mathbf{B} dies after \mathbf{C}.
 π, the probability (by the same Table) that B dies after A.
 φ, the probability (by Table I.) that B survives A . $\left.\left.\mathrm{A}^{y}, \mathrm{~A}^{x}, \overrightarrow{\mathrm{AB}}\right)^{y}, \overrightarrow{\mathrm{AC}}\right)^{x}, \& \mathrm{c} . \mathrm{B}^{x}, \mathrm{~B}^{x}, \overline{\mathrm{BC}}^{x}, \& \mathrm{c} . \mathrm{C}^{x}$,
 $\mathbf{C}{ }^{y}, \overline{\mathrm{CA}}^{c}, \& \mathrm{c}$. the values of annuities on the single or joint lives for x, y, z years.
 $\mathrm{A} \frac{1}{y}, \mathrm{~A} \frac{1}{x}, \mathrm{~B} \frac{1}{x}, \mathrm{~B} \frac{1}{z}, \mathrm{C} \frac{1}{x}, \mathrm{C} \frac{1}{y}, \& \mathrm{c}$. the values of annuitics on single lives, x, y, or z years older than $\mathrm{A}, \mathrm{B}, \mathrm{C}, \& \mathrm{c}$.
 $\frac{1}{r x>}, \frac{1}{r z}, \frac{1}{r y}$, the value of $£ 1$ at the end of x, y, or z years.

 ## PROBLEM XIL

 To find the value of an annuity on the life of \mathbf{C} after A, on the particular condition that A's life when it fails shall fail before the life of B.

 > SOLUTION.

 If C be the oldest of the three lives, the value will be $=\frac{C-A C}{2}+\frac{B C-A B C}{2}$. If A be the oldest, the value will be $=\frac{\mathrm{C}^{x}+\overline{\mathrm{BC}}{ }^{x}}{2}+\varphi \cdot \overline{\mathrm{C}-\mathrm{C}^{x}}-$ $\frac{A C+B A C}{2}$. If B be the oldest, the value will be $=$ $\frac{\mathrm{C}^{y}-\widehat{A C}^{y}}{2}+\pi . \overline{\mathrm{C}-\mathrm{C}^{y}}+\frac{\mathrm{BC}-\mathrm{ABC}}{2}$. And if the three lives be equal the value will be $=\frac{\mathrm{C}-\mathrm{CCC}}{2}$.

 > PROBLEM XIII.

 To determine the value of an annuity during the life of C after A , provided A should survive B .

 ## SOLUTION.

 The value when \mathbf{C} is the oldest of the three lives will be $=\frac{\mathrm{C}-\mathrm{AC}}{2}-\frac{\mathrm{BC}-\mathrm{ABC}}{2}$; when A is the oldest it will be $=\mathrm{C}-\frac{\mathrm{C}^{x}+\overline{\mathrm{BC}}^{x}}{2}+\varphi \cdot \overline{\mathrm{C}-\mathrm{C}^{x}}-$ $\frac{\mathrm{AC}-\mathrm{ABC}}{2}$; when B is the oldest $=\mathrm{C}-\mathrm{AC}-$ $\frac{\mathrm{C}_{-1}-\overline{\mathrm{AC}^{y}}}{2}-\frac{\mathrm{BC}-\mathrm{ABC}}{2}-\pi . \overline{\mathrm{C}-\mathrm{C}^{y}}$, and when the three lives are equal the value will be $=$ $\frac{\mathrm{C}-2 . \mathrm{CC}+\mathrm{CCC}}{2}$.

 PROBLEM. XIV.
 To determine the value of a given sum payable on the death of A and C, provided B should survive one life in particular (A).

 ## SOLUTION: .

 Let the value of an annuity of $£ 1$ depending on the contingency in Problem XII. be denoted by Y , and the value required, when the ages are
 ages be equal, the value will be $=\frac{\mathrm{S} \overline{r-1}}{r} \times$. $\overline{\mathrm{V}-\mathrm{CC}} \mathbf{C - C C C}$.

 PROBLEM XV.
 To find the value of a given sum payable on the death of A and C, should B die before one life in particular (A).

 ## SOLUTION.

 Let the value of an annuity of $£_{1}$ depending on the contingency in Problem XIII. be denoted by Z , let the value of the given sum after the death of A and B, provided B should die before A (found by the 2 d Question in Note \mathbf{O}) be represented by X, then will the value required be $=$ $\mathbf{Z}-\frac{\mathrm{s} \cdot \overline{r-1}}{r} \times \mathbf{X}$ if the ages of the three lives be unequal, or $=\frac{\mathrm{S} \cdot \overline{r-1}}{\mathrm{r}^{r}} \times \overline{\mathrm{V}-\mathrm{L}}$ if the ages be equal.

 ## PROBLEM XVI.

 To find the value of a given sum payable on the decease of B and C , should their lives be the last that shall fail of the three lives- A, B, and C .

 ## SOLUTION.

 If B and C are both of them older than A , and both of them nearly of the same age, the value required will be $=S$ into $\frac{\bar{r}-1}{v} \times \frac{\bar{V}-A B C}{3}-\frac{B+C}{2}$,
 $+\mathrm{BC}-\frac{\mathrm{AB}+\mathrm{AC}}{2 r}+\frac{m}{2 b r} \times \overline{1+\mathrm{AP}}-\frac{\mathrm{PC}-\mathrm{APC}}{3}+$
 $\frac{d}{2 c r} \times \overline{\overline{1+A T}-\frac{B T-A B T}{3}-\frac{4 m \cdot 1+\frac{1+A P T}{3 b}}{3 b}}$
 $\frac{\beta . \overline{\mathrm{FC}-\mathrm{AFC}}}{3 b}-\frac{k}{3 c} \times \overline{\mathrm{BK}-\mathrm{ABK}}+\frac{\beta_{0} \mathrm{AFK}}{b} ; B u t$
 if the age of B much exceeds that of C the general rule will be more accurately expressed by S into $\frac{\overline{r=1 .} \overline{\mathrm{BC}-\mathrm{ABC}}}{3 r}+\frac{k}{3 c} \times \frac{\overline{\beta \cdot \overline{\mathrm{FK}-\mathrm{AFK}}} \frac{\mathrm{B}}{6}-\mathrm{BK}-\mathrm{ABK}}{}$

 be the oldest of the three lives, the general rule rule will be S into $\frac{\overline{r-1}}{3 r} \overline{\mathrm{~V}-\mathrm{L}}+\frac{\mathrm{BC}^{x}-\mathrm{C}^{x}}{r}-$
 $\overline{\overline{r-1} \cdot \overline{\mathrm{~V}+\mathrm{Bx}}+\mathrm{AB}+\mathrm{AC}} \frac{2 r}{2 c} \times \frac{k}{2 c} \times \overline{\frac{\overline{\mathrm{a} \cdot \mathrm{HBK}}}{3 a}+\overline{\mathrm{K}^{x}-\left.\mathrm{BK}\right|^{*}}}$
 $\frac{\overline{2 . \overline{\mathrm{AK}}-\mathrm{ABK}}}{3}+\frac{\alpha}{2 a} \times \overline{\mathrm{HB}+\frac{4 \cdot \overline{\mathrm{HC}-\mathrm{HBC}}}{3}}+\frac{s}{3 a r} \times$
 $\overline{\mathrm{NC}-\mathrm{NBC}}+\frac{d}{2 c r} \times \overline{\overline{\left.\mathrm{T}^{x}-\mathrm{BT}\right)^{x}}+\frac{2 s . \overline{1+\mathrm{NBT}}}{3 c}}$ $\frac{\overline{\mathrm{AT}-\mathrm{ABT}}}{s}+\frac{\pi \cdot q \cdot \overline{r-1}}{c r x+1} \times \overline{\mathrm{V}-\mathrm{C}^{x}}+\overline{\mu+\frac{q}{c}} \times \frac{p \cdot \overline{r-1}}{b r x+1}$ $\times \overline{\mathrm{V}-\mathrm{B}^{x}}$.-And if the three lives be equal, it will be simply $\frac{\mathrm{S} \cdot \overline{\mathrm{r}-\mathrm{l}}}{3 r} \times \overline{\mathrm{V}-\mathrm{L}}$.

 PROBLEM XVII.
 To find the value of a given sum payable on the death of C , provided A should be the first, \mathbf{B} the second, and \mathbf{C} the third that shall fail of the three lives A, B, and C .

 ## SOLUTION.

 When \mathbf{C} is the oldest of the three lives, the value of the given sum will be S into $\frac{k}{6 c} \times$ $\frac{\overline{\beta_{0} \cdot \overline{\mathrm{FK}}-\mathrm{AFK}}-\overline{\mathrm{BK}}-\mathrm{ABK}}{b}+\frac{\overline{r-1} \cdot \overline{\mathrm{BC}-\mathrm{ABC}}}{6 \cdot}+\frac{m}{3 b_{r}} \times \underset{x}{ }$
 $-\times \overline{\frac{d \cdot \overline{\mathrm{PT}-\mathrm{APT}}}{c}-\overline{\mathrm{PC}-\mathrm{APC}}}-\frac{\beta_{\cdot} \overline{\mathrm{FC}} \overline{\mathrm{AFC}}}{6 b}+$ $\frac{\mathrm{C}-\mathrm{AC}}{2 r^{r}}+\frac{d}{2 c r} \times \frac{\overline{\mathrm{BT}-\mathrm{ABT}}}{3}-\overline{\mathrm{T}-\mathrm{AT}}$ - When B is the oldest of the three lives, the value will be S into $\frac{\overline{\mathrm{T}-1} \cdot \overline{\mathrm{BC}-\mathrm{ABC}}}{6 r}+\frac{k}{6 c} \times \frac{\overline{\beta \cdot \mathrm{FK}-\mathrm{AFK}}}{b}-$ $\overline{\overline{\mathrm{BK}}-\mathrm{A} \overline{\mathrm{BK}}}+\frac{m}{36 r} \times \frac{\text { d. } \overline{\mathrm{PT}-\mathrm{APT}}}{\mathrm{c}}-\overline{\mathrm{PC}-\mathrm{APC}}$
 $\frac{\beta . \overline{\mathrm{FC}-\mathrm{AFC}}}{6 b}+\frac{\mathrm{C}^{y}-\overline{\mathrm{AC}}}{2 r}+\frac{d}{2 r c} \times \frac{\mathrm{BT}-\mathrm{ABT}}{3}-$ $\overline{\mathrm{T}^{y}-\mathrm{AT}_{1}^{\boldsymbol{y}}}+\frac{\pi \cdot q \cdot \overline{r_{-1}}}{c r y+1} \times \overline{\mathrm{V}-\mathrm{C}} \overline{\frac{1}{y}}$. When A is the oldest, and B the youngest of the three lives, the general rule becomes S into $\frac{\overline{r-1}, \overline{\mathrm{~V}-\mathrm{L}}}{6 r}+$ $\frac{\frac{\overline{B C})^{x}-\overline{A C}+\mathrm{C}^{x}}{2 r}}{2 r}-\frac{k}{2 c} \times \overline{\mathrm{BK}+\frac{\mathrm{AK}-\mathrm{ABK}}{3}}+\frac{d}{2 c r} \times$ $\frac{\overline{\mathrm{AT}-\mathrm{ABT}}+\overline{3}+\overline{1+\mathrm{T}^{x}}-\overline{\mathrm{BT}+\overline{\mathrm{BT}}}{ }^{x}}{3}+\frac{s}{6 a r} \times$ $\overline{\mathrm{NC}-\mathrm{NBC}}+\frac{d \cdot \overline{1+\mathrm{NBT}}}{c}+\frac{a}{3 a} \times \overline{\mathrm{HC}-\mathrm{HBC}}+$
 A is the oldest, and C the youngest of the three lives, it becomes S into $\frac{\overline{1-1}}{6 r} \times \overline{\mathrm{V}-3 \mathrm{C}^{x}-\mathrm{ABC}}$ $+\frac{\overline{\overline{-1}} \cdot \overline{\mathrm{BC}-\mathrm{AC}}}{2 r}-\frac{\beta}{2 b} \times \frac{\overline{\mathrm{AF}-\mathrm{AFC}}+\frac{\alpha \cdot \mathrm{HFC}}{3 a}+\frac{\alpha}{2 a} \times}{\frac{3}{3}}$ $\overline{\frac{2 . \overline{\mathrm{HB}-\mathrm{HBC}}}{3}+\mathrm{HC}}+\frac{s}{6 a r} \times \overline{\mathrm{NB}-\mathrm{NBC}}+\frac{m \cdot \overline{\mathrm{l}+\mathrm{NPC}}}{b}$ $=\frac{m}{2 b r} \times \overline{1+\mathrm{PC}}+\overline{\frac{2 \cdot \overline{\mathrm{AP}-\mathrm{APC}}}{3}+\overline{\pi+\frac{p}{b}}} \times$
 And
 when
 when the three lives are equal, the general rule is reduced to $\frac{\mathrm{S} \cdot \overline{r-1} \cdot \overline{\mathrm{~V}-\mathrm{L}}}{6 \cdot}$.

 ## PROBLEM XVIII.

 To determine the value of a given sum payable on the death of A or B , should either of them be the first or second that fails of the three lives A, B, and C.

 ## SOLUTION.

 The value of this reversion in all cases is $\frac{\mathrm{S} \cdot \overline{r=1}}{\pi}$ $\times \overline{\mathrm{V}-\mathrm{AB}}$.

 ## PROBLEM XIX.

 To determine the value of a given sum payable on the decease of A or B , should either of them be the sicond or third that shall fail of the three A, B, and C .

 ## SOLUTION.

 The value of this reversion when A and B are older than C , and both of them nearly of the same, age, will be S into $\frac{r-1}{r} \times \overline{\overline{\mathrm{V}+\mathrm{ABC}}-}$ $\frac{\overline{A+B+C}}{2}+\frac{A C}{2 r}-\mathrm{AB}-\frac{k}{2 c} \times \overline{\mathrm{AK}+\mathrm{BK}-2 \mathrm{ABK}}$ $+\frac{\beta}{2 b} \times \overline{\mathrm{AF}-\mathrm{AFC}}+\frac{m}{2 b r} \times \overline{\overline{1+\mathrm{AP}}+\frac{d \cdot \overline{\mathrm{PT}-\mathrm{APT}}}{c}}$. But if B be considerably the oldest of the three lives, the value will be S into $\frac{r-1}{r} \times \overline{\mathrm{V}+\mathrm{ABC}-}$ $A^{A}+\frac{B+B C}{2}$
 $\overline{\frac{A^{y}+\mathrm{B}+\mathrm{BC}}{2}}+\overline{\mathrm{AC}_{i}^{y}} \frac{\mathrm{AB}}{2 r}-\frac{k}{2 c} \overline{\times \overline{\mathrm{AK}}}{ }^{y}+\mathrm{BK}-2 \mathrm{BF}_{\boldsymbol{\prime}}^{\prime}$
 $+\frac{\beta}{2 b} \times \overline{\mathrm{AF}-\mathrm{AFC}}+\frac{m}{2 b r} \times \overline{\overline{1+\mathrm{AP}}+\frac{d . \overline{\mathrm{PT}-} \overline{\mathrm{APT}}}{}, \overline{2}}$
 $+\frac{\lambda k}{a^{\prime} y^{y}} \times \frac{\overline{r-1} \cdot \overline{\mathrm{~V}-\mathrm{A} \frac{1}{y}}}{r}$ —— If C be the oldest of the three lives, the value of the reversion will $\mathrm{be}^{\prime}=\mathrm{S}$ into $\frac{\overline{r-1} \times \overline{\mathrm{V}-\frac{A^{x}+\mathrm{B}^{2}}{2}+\mathrm{ABC}}}{r}+\frac{\mathrm{BC}+\mathrm{AC}}{2 r}$
 $\overline{1+\mathrm{NC}}+\frac{m}{b r} \times \frac{s \cdot \overline{1+\mathrm{NPC}}}{a}-\frac{1+\mathrm{PC}}{z}+\frac{p_{0} \mu_{0} r-1 . \overline{\mathrm{V}-\mathrm{B}_{z}^{1}}}{b r_{x}+1}$ $+\frac{\text { s. } k \cdot \overline{r-1} \cdot \overline{\mathrm{~V}-\mathrm{A} \frac{1}{z}}}{a_{1} r^{z+1}}+\frac{p k}{a b r z+1} \times \overline{1+\mathrm{AB}} \frac{1}{\frac{1}{z}}$.
 If the three lives be equals the value will be $=$ $\frac{\mathrm{S} . \overline{r-1}}{r} \times \overline{\mathrm{V}-\mathrm{C}-\mathrm{CC}+\mathrm{CCC} .}$

 ## PROBLEM XX.

 To determine the value of a given sum after the decease of A or B, should either of them be the first or last that shall fail of the three lives A, B, and C.

 ## SOLUTION.

 If B be the oldest of the three lives, the value of the given sum will be S into $\frac{r-1}{r}$

 $$
 \begin{array}{r}
 \overline{\mathrm{V}-\mathrm{ABC}-\frac{\mathrm{A}^{y}+\mathrm{B}}{2}}-\frac{\overline{\mathrm{AC}}{ }^{y}+\mathrm{BC}}{2 r}+\mathrm{AB}- \\
 \frac{\text { B. } \overline{\mathrm{AF}-\mathrm{AFC}}}{26}
 \end{array}
 $$

 $\frac{\text { A. } \overline{A F}-\mathrm{AFC}}{2 b}+\frac{\pi}{2 c} \times \overline{\mathrm{AK}} \mathrm{Y}^{Y}+\mathrm{BK}-2 \mathrm{ABK}+\frac{m}{2 b r} \times$

 If C be the oldest of the three lives, the value will be S into $\frac{r-1}{r} \times \overline{\mathrm{V}-\mathrm{ABC}-\overline{\frac{1}{2}} \overline{\mathrm{~A}^{2}+\mathrm{B}^{x}}}$
 f. $\overline{\mathrm{AF}} \overline{\frac{3}{3}-\mathrm{AFC}} 2 b-\frac{\alpha \cdot \overline{\mathrm{HF})^{3}-\mathrm{HFC}}}{2 a}+\frac{m}{b r} \times \frac{\overline{1+\mathrm{PC}}}{2}-$
 $\frac{\overline{s, \overline{1+N P C}}}{a}-\frac{A C+B C}{2 r}+A B+\frac{s}{2 a r} \times \overline{1+N C}+$
 $\frac{r-1}{r x+1} \times \overline{\mathrm{V}}-\overline{\mathrm{A}} \frac{1}{\frac{1}{x}+\mathrm{B}_{\frac{1}{z}}^{2}}-\frac{k p}{a b r x+1} \times \overline{\mathrm{AB}} \frac{1}{\bar{z}}$. _ And if the three lives be eqnal, the value will be $\frac{\mathrm{S} \cdot \overline{\mathrm{r-1}}}{5}$ \propto V-C $+\mathrm{CC}-\mathrm{CCC}$.

 ## PROBLEM XXI.

 To find the value of a given sum payable on the death of A; should his life be the first or second that fails, and should B's life, if it fails, become extinct before the life of \mathbf{C}.

 ## SOLUTION.

 The value required in this Problem is no more than "the value of a given sum on the death "" of A, should C survive him," and therefore is obtained by the Solution of the first Question in. Note ${ }^{0}$.

 ## PROBLEM XXII.

 To determine the value of a given sum payable on the death of A , should his life be the second or third that fails, and should B's life when it fails become extinct before the life of \mathbf{C}.

 ## SOLUTION.

 When B is the oldest of the three lives, the value of the reversion will be $=S$ into $\frac{r-1}{6 r} \times$ $\overline{2 \mathrm{~V}-\overline{3} \overline{\mathrm{~A}}-\mathrm{ABC}}-\frac{x}{3 c} \times \overline{\mathrm{BK}-\mathrm{ABK}}+\frac{\beta x . \mathrm{AFK}}{6 b c}$ $+\frac{m}{3 b r} \times \overline{\overline{\mathrm{PC}-\mathrm{APC}}-\frac{d_{0} \overline{1+\mathrm{APT}}}{2 c}}+\frac{\beta}{6 b} \times$ $\overline{\mathrm{FC}-\mathrm{AFC}+3 \mathrm{AF}}-\frac{d}{6 c r} \times \overline{\mathrm{BT}-\mathrm{ABT}}-\frac{x}{2 c} \times$ $\overline{\mathrm{AK}}{ }^{r}+\frac{\overline{\mathrm{ACy}} \mathrm{y}-\mathrm{AB}}{2 r}+\overline{\varepsilon+\frac{q}{c}} \times \frac{k_{0} \overline{r-1} \cdot \overline{\mathrm{~V}-\mathrm{A}} \bar{y}}{a^{r y+1}}$. When C is the oldest of the three lives, the value will be $=\mathrm{S}$ into $\frac{r-1}{6 r} \times 2 \mathrm{~V}-\overline{3 \mathrm{~A}-\mathrm{ABC}}-\frac{x}{3 c} \times$
 $\overline{\mathrm{BK}-\mathrm{ABK}}+\frac{\beta x}{6 b c} \times \mathrm{AFK}+\frac{m}{3 b r} \times \overline{\mathrm{PC}-\mathrm{APC}}-$ $\overline{d . \overline{1+\mathrm{APT}}}-\frac{d}{6 c} \times \overline{\mathrm{BT}-\mathrm{ABT}}+\frac{\beta}{6 b} \times \overline{\mathrm{FC}-\mathrm{AFC}}$
 When A is the oldest, the value will be $=\mathbf{S}$ into $\frac{x-1}{6 r} \times \overline{2 \mathrm{~V}-3 \mathrm{~A}-\mathrm{ABC}}-\frac{\pi}{3 c} \times \overline{\mathrm{AK}-\mathrm{ABK}}$ $\frac{\frac{\frac{a x .}{} \mathrm{HBK}}{3 a c}+\frac{\alpha}{6 a} \times \overline{\mathrm{HC}}-\mathrm{HBC}-\frac{d}{6 c r} \times}{\overline{\mathrm{AT}-\mathrm{ABT}+\frac{s . \overline{1+N B T}}{a}}-\frac{s}{2 a r} \times \frac{\overline{\mathrm{NC}-\mathrm{NBC}}}{3}}$
 $\overrightarrow{\overline{+}+\overrightarrow{N B}}+\frac{\mathrm{AC}-\mathrm{AB}}{2 r}$; and when the lives are equal, the value is $\frac{\mathrm{s} \cdot \overline{r-1}}{6 r} \times \overline{2 \mathrm{~V}-\overline{3 C-C C C}}$.

 ## PROBLEM XXIII.

 To determine the value of a given sum payable on the death of A , should his life be the first or last that shall fail of the three lives; and should B's life, if it fail, become extinct before the life of C.

 ## SOLUTION.

 If B be the oldest of the three lives, the value will be S into $\frac{\overline{r-1}}{2 r} \times \overline{\mathrm{V}-\mathrm{A}-\mathrm{ABC}}+\frac{\mathrm{AC}}{2}-\frac{\mathrm{AB}}{2 r}$ $+\frac{m d}{2 b c r} \times \overline{1+\mathrm{APT}}-\frac{d}{2 c r} \times \overline{\overline{1+\mathrm{A} \bar{T}}+\overline{\mathrm{BT}-\mathrm{ABT}}}$ $-\frac{\beta x}{2 b c} \times \mathrm{AFK}+\frac{\beta}{2 b} \times \overline{\mathrm{AF}+\mathrm{FC}-\mathrm{AFC}}+\varepsilon+\frac{q}{c}$
 be the oldest, the value becomes S into $\frac{\overline{r-1}}{2 r} \times$ $\overline{\mathrm{V}-\mathrm{A}^{2}-\mathrm{ABC}}+\frac{\mathrm{AC}}{2}-\frac{\overline{\mathrm{AB}}{ }^{x}}{2 r}+\frac{m d}{2 b c r} \times \overline{1+\mathrm{APT}}-$
 $\times \overline{\left.\overline{\mathrm{AF}}\right|^{z}+\mathrm{FC}-\mathrm{AFC}}+\frac{s k \cdot \overline{r_{-1}} \cdot \overline{\mathrm{~V}-\mathrm{A}_{z}^{\frac{1}{z}}}}{a r^{z+1}}$.
 If \mathbf{A} be the oldest, it becomes S into $\frac{r-1}{2 r} \times$ $\overline{\mathrm{V}-\mathrm{A}-\mathrm{ABC}}+\frac{\mathrm{AC}}{2}-\frac{\mathrm{AB}}{2 r}+\frac{\alpha \cdot \mathrm{HBC}}{2 a}-\frac{x_{0} \mathrm{AK}}{2 c}-$ $\frac{d}{2 c r} \times \overline{\mathrm{AT}-\mathrm{ABT}}+\frac{s}{2 a r} \times \overline{1+\mathrm{NC}+\mathrm{NB}-\mathrm{NBC}}-$

 $$
 \text { D D } 2
 $$

 $\frac{v d s}{2 a c r}$
 $\frac{d s}{2 a c r}+\overline{1+N B T}:-$ And if the three lives be equal, it becomes $=\frac{\mathrm{s} . \overline{r-1}}{2 r} \times \overline{\mathrm{V}-\mathrm{C}+\mathrm{CC}-\mathrm{CCC}}$.

 ## PROBLEM XXIV.

 To determine the value of a given sum, payable on the death of A, B, and C , provided C shall die after one life in particular (A).

 ## SOLUTION.

 The value of the reversion in this case, when B is the oldest of the three lives, will be S into $\frac{r-1}{2 r \text {. }}$ $\times \widehat{\mathrm{BC}-\mathrm{B}-\mathrm{ABC}}+\frac{\mathrm{BC}}{2}-\frac{\mathrm{AB}}{2 r}+\frac{m}{2 b r} \times \overline{\overline{1+\mathrm{AP}}-}$ $\frac{\overline{d \cdot \overline{1+A P T}}}{c}-\frac{x}{2 c} \times \overline{\mathrm{BK}-\mathrm{ABK}}+\mathrm{W}$.-When C is the oldest of the three lives, the value will be S into $\frac{r-1}{2 r} \times \overline{\mathrm{BC}-\mathrm{B}^{2}-\mathrm{ABC}}+\frac{\mathrm{BC}}{2}-\frac{\overline{\mathrm{AB}}{ }^{x}}{2 r}+\frac{m}{2 b r}$ $\times \overline{1+\overline{\left.\mathrm{AP}\right|^{2}}}-\frac{d \cdot \overline{1+\mathrm{APT}}}{c}-\frac{x}{2 c} \times \overline{\mathrm{BK}-\mathrm{ABK}}+\mathrm{W}$ $+\frac{\mu p . r-1 \cdot \frac{V}{}+B_{z}^{\frac{1}{z}}}{b_{r i x}+1}$. When A is the oldest of the three lives, the value will be $=S$ into $\frac{r-1}{2 r}$ $x \overline{\mathrm{~V}-\mathrm{B}-2 \mathrm{C}+2 \mathrm{BC}+\mathrm{AC}-\mathrm{ABC}}+\frac{\overline{\mathrm{BC}})^{*}-\mathrm{AB}}{2 r}+$ $\frac{x}{2 a} \times \overline{\mathrm{HB}+\mathrm{HC}-\mathrm{HBC}}-\frac{x}{2 c} \times \overline{\overline{\mathrm{BK}})^{r}+\mathrm{AK}-\mathrm{ABK}}+$
 When the three lives are of equal age, the value will be $=\frac{\mathrm{S} . \overline{r-1}}{2 r} \times \overline{\mathrm{V}-3 \mathrm{C}+3 \mathrm{CC}-\mathrm{CCC},} \begin{aligned} & \text { that is } \\ & \text { ou half }\end{aligned}$
 " half the reversion after the extinction of the. three lives."

 In the further pursuit of these enquiries I have discovered a simple method of approximating to the values in the preceding Problems; but it would be improper to enter more fully into the subject at present. I shall only observe here, that the solutions of those cases which involve three lives, and even those which involve two lives in the survivorship, being formerly deduced from an erroneous hypothesis, it was impossible to determine how far any approximations could be depended upon. By the assistance of the foregoing rules which have been derived from the real probabilities of life, and which I believe exhaust the subject in regard to three lives, this point may now be ascertained; though perhaps it may not often be adviseable to have recourse to approximations, when the exact values can be obtained with so little additional trouble.

 The following Tables are inserted, as being necessary to the solution of the Problems in this Section. The demonstrations of the rules by which they have been computed may be seen in the 79th and 84th volumes of the Philosophical Transactions.

 ## Tables.

 ## TABLE I.

 Shewing the probabilities of survivorship between two persons of all ages, whose common difference of age is not less than ten years, computed from the Northampton Table of Observations.

 | en years difference. | | Twenty yearsdifference | | | Thirty years difference | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | Probabilities | | | | | | |
 | | | | | | | | |
 | | 5136.4864 | | . 4433 | 567 | | | |
 | | 4823.5177 | | . 408 : | | | | |
 | | +598. 540 | | 3900 | 6100 | | | |
 | | 4470.553 | | 3765 | 6231 | | 3135 | |
 | | 4343.5657 | | . 3640 | . 6360 | | 2985 | 15 |
 | | 4253.5747 | $27-7$ | . 3548 | 6 | | 2883 | 17 |
 | | 4191.5809 | | . 3484 | . 6 | | | 02 |
 | | 416\%.5840 | | . 3452 | . 6 | | . 27 | |
 | 20-lc | . 4153.58 | 30-10 | . 3441 | . 655 | 4()-10 | | 67 |
 | 21-11 | +158. 58 | 31-11 | 3440 | .560 | 1 | | 76 |
 | | 4168.58 | 32-12 | 3442 | 55 | | | 82 |
 | 23-13 | 4178.582 | 33-13 | 344 | 65 | 4 | | |
 | | 419 C .5810 | $34-14$ | 3447 | . 6553 | 44-14 | | 239 |
 | | 4202.5798 | $35-15$ | $3+51$ | 6540 | | | |
 | | . 4216.5784 | | . 3456 | | | | |
 | | 4226.5774 | | 3458 | . 6542 | | | |
 | | 4232.57 | | 3454 | . 6546 | | | |
 | | 423+. 57 | 39-19 | | | 49-19 | | |
 | | 4231.5769 | | 3429 | 6571 | 50-20 | 26 | 50 |
 | | 4222.5778 | | . 340 \% | . 6592 | 51-\%1 | 2621 | 79 |
 | | 4209.5791 | | . 3384 | . 6616 | 52 | 2589 | 7411 |
 | | . 4197.5803 | 43-23 | -355, | .6641 | 53 | 2551 | 7444 |
 | $34-24$ | 4185.5817 | +4-24 | 3335. | . 6665 | 54 | 252 | 478 |
 | | . 417 C .5830 | +5 | 3309. | . 6691 | | 248 | 51.3 |
 | | . 4156 :5844 | 46-26 | 3283. | 67 | 20 | | 543 |
 | | 4141.5859 | 47-27 | 3250 | 67 | 57-27 | | 84 |
 | | 4126.5874 | 48-28 | 3228 | .6772 | 58-28 | 2379 | 7621 |
 | | 4110.5890 | 49-29 | . 3199 | .6801 | 59-29 | 2341 | |
 | | . 4094.5906 | $5 \mathrm{C}-30$ | . 3170 | | 60-30 | . 2302 | . 76.98 |
 | | 40785922 | 51-31 | . 3143 | 6S57 | 61-31 | . 2263 | . 7737 |
 | | . 4063 . 5937 | 52-32 | . 311 C | . 688.4 | 62-32 | . 2223 | 7777 |
 | | . 59 | 5s-33 | | . 69 | | 3.2181 | |

 Ten

 Tables.

 Тен

 | Forty years difference. | | Fifty years difference. | Sixty years difference. | | |
|---|---|---|---|---|---|
 | Ages. | obabilities. | Ages. Probabilities | Ages. | Probabilities. |
 | | 3 | 51-1.391t.6084 | 61 | |
 | 42-2 | . 3398.6602 | 252-2.2887.7113 | 62 | . 2413.7587 |
 | 43-3 | .2985 7015 | 553-3.2446.7554 | 63-3 | 3.1952.8048 |
 | 44-4 | . 2688 . 7312 | 54- 4.2128 .7872 | | . 1619.8381 |
 | 45 | . 2520.7480 | 55- 5.1948 .8052 | 65 | 5.1428 -8572 |
 | 46 | .2353\|.7647 | 56-6.1768.8232 | 66-6 | 6. 1237 . 8763 |
 | 47 | $223 C .7770$ | 157-7.1635.8365 | 67-7 | .1092.8908 |
 | 48 | . 2140.7860 | 58-8.1535.8465 | 68- | 8.0982 . 9018 |
 | 49-9 | .2086.7914 | 59-s.1474.8526 | 69 | 9.0912.9088 |
 | 50 | 2059.7941 | 60-10.1442.8558 | 7 | . 0873.9127 |
 | 51-11 | .2045.7955 | 61-11.1422.8578 | 71-11 | 1.0846.9154 |
 | 52-12 | . 2035 .7965 | 62-12.1406.8594 | 7 | . 0825.9175 |
 | 53-13 | .2026.7974 | 63-13.1390. 8610 | 73-13 | . 0805.9195 |
 | 54-14 | . 2018 . 7982 | 64-14.1376\|.8624 | | $4 \cdot 0788 \cdot 0212$ |
 | 55-1.5 | . 2011.7989 | 65-15.1362.8638 | | $51.0775 \mid .9225$ |
 | 56-16 | .2005.7995 | 16. 1350.8650 | | $.0768 .9232$ |
 | 57-17 | . 1996 . 8004 | 67-17.1335.8665 | 77-17 | . 0759.9241 |
 | 58-18 | . 1981.8019 | 68-18.1314.8686 | - | . 0743.0257 |
 | 59-19 | . 1959 \| 8041 | | 7 | . 0719.9281 |
 | 60-20 | . 1931.8069 | 70-20.1253.8747 | | 0.0690-9310 |
 | 61-21 | . 1896 . 8104 | 71-21.1211.8789 | 81 -21 | 1.0655-9345 |
 | 62-22 | . 1855 .8145 | 772-22.1165.8835 | 82-22 | 2.0616 .9384 |
 | 63-23 | . 1812.8188 | 73-23.1120.8880 | 83-23 | 3.0581 .9419 |
 | $-24 l^{\circ}$ | \|.1768|.8232 | (74-24.1075).892 | | 4605561.9444 |

 Tables.

 | Forty years difference. | | Fifty years difference. | | Sixty years difterence. | | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | Ages. | Probabilities. | Ages. | Probabilities | Ages. | Probabi | ilities. |
 | 65-25. | . 1722 \| 8278 | 75-25 | .103¢ .8968 | 85-25 | .0532 | . 9468 |
 | 66-26 | .1676.8324 | 76-26 | . 0991.9009 | 86-26 | . 0511 | .9489 |
 | 67-27 | . 1629.8371 | 77-2i | .0950 9050 | 87-27 | 04.90 | . 9510 |
 | 68-2s | .1581.8419 | 78-28 | .0907. 5093 | 88-28 | . 0473 | . 9527 |
 | 69-29 | .1532. 8468 | 79-2y | . 0861.9139 | 89-29 | . 0448 | . 9552 |
 | 70-30 | . 1483 . 8517 | 80-30 | . 0815 9185 | 90-30 | . 0413 | . 9587 |
 | $71-31$ | . 1434.8566 | 81-31 | . 0770 . 9230 | 91-31 | . 0363 . | . 9637 |
 | 72-32 | . 1384.8616 | 82-32 | . 0727.9273 | 92-32 | . 0310 | . 9690 |
 | 78-33. | . 1335 . 8665 | 83-33 | . 0688 . 9312 | 93-33 | . 0248 | . 9752 |
 | 74-34 | . 1287 . 8713 | 84-34 | . 0660.9340 | 94-34 | . 0194 | . 9806 |
 | 75-35 | . 1242.8758 | 85-35 | . 0635.9365 | 95-55 | :0140. | . 9860 |
 | 76-36 | . 1199.8801 | 86-36 | . 0612.9388 | 96-36 | .0095 | . 9905 |
 | 77-37 | . 1156.8844 | 87-37 | . 0591.9409 | | | |
 | 78-38 | .1112.8888 | 38-38 | . 0574.9426 | | | |
 | 79-39 | . 1064.8936 | 89-39 | . 0548.9452 | | | |
 | 80-40 | . 1021.8979 | 90-40 | . 0511 1.9489 | | | |
 | 81-41 | . 0968.9032 | 91-41 | . 0455.9545 | | | |
 | 82-42 | .0919.9081 | 92-42 | .0392.9608 | | | |
 | 83-43 | . 0876.9124 | 93-43 | . 0315.9685 | | | |
 | 84-44. | . 0846.9154 | 94-44 | . 0247.9753 | | | |
 | 85-45 | . 0818.9182 | 95-45 | . 0180.9820 | | | |
 | 86-46 | .0795.9205 | 96-46 | . 0123.9877 | | | |
 | 87-47 | . 0774.9226 | | | | | |
 | 88-48 | . 0759.9241 | | | | | |
 | 89-49 | . 0732.9268 | | | | | |
 | 90-50 | . 0690.9310 | | | | | |
 | 91-51 | . 0617.9383 | | | | | |
 | 92-52 | . 0533.9467 | | | | | |
 | 93-53 | . 0432.9568 | | | | | |
 | $94-54$
 $95-55$ | .0342.9658 | | | | | |
 | 96-56 | 1.0173).9827 | | | | | |

 ## Tables.

 ## TABLE II.

 Shewing the probability of one's life dying after another*.

 END OF VOLUME FIRST.
 Printed by H. Baldwin and Son,
 New Bridge-street. London.

 ## ERRATA:

 For k, in page 396, lines 19 and 22, in page 397, lines 6 and 19, in page 398, lines 4, 10, and 13, in page 399, line 20 , and in page 400 , line 1 , read x.-For $z b, z a$, and $z a r$, in page 400 , line 6 , read $2 b, 2 a$, and $2 a r$, and for z, in line 7 read 2.


    ```
    368.31
    P93
    v. ```

